Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Towards a New Theory of Optimal Dynamic Graph Algorithms

Project description

Dynamic graph algorithms under study

Dynamic graph algorithms are crucial for coping with dynamic networks, which model the increasingly changing physical world. The holy grail in the field has been to design algorithms with poly-logarithmic update time. Recent research studies have sought to push the update time towards an absolute constant independent of the input size – which is qualitatively very different than a poly-log bound. The EU-funded DynOpt project will investigate which graph problems admit intrinsically optimal update time. The study will also focus on provably optimal algorithms. Project results have the potential to revolutionise the field of dynamic graph algorithms, and impacting other fields, thus enriching the general landscape of computer science.

Objective

Dynamic graph algorithms are of increasing critical importance. They are crucial for coping with dynamic networks, which model the ever-changing physical world, and have been instrumental in achieving numerous major breakthroughs in static graph algorithms.
The holy grail in the field of dynamic graph algorithms has been to design algorithms with poly-logarithmic (in the input size) update time. However, recent exciting developments, in which the PI has played a central role, aim to push the update time toward an absolute constant
independent of the input size which is qualitatively very different than a poly-log bound.
This goal is of fundamental importance not just from a theoretical perspective, but also from a practical viewpoint, due to the rapidly growing size of modern networks.
An algorithm is intrinsically optimal if its update time matches the ratio of the problems static time complexity to the input size. The main question underlying this research is:
Which graph problems admit intrinsically optimal update time?
Only few intrinsically optimal graph algorithms are known. The unique goal of this project is to establish a systematic study of intrinsically optimal algorithms. We will also study provably optimal algorithms, aiming to advance our understanding of the thin line that separates these two distinct optimality notions. To achieve this goal, we must go far beyond the current state-of-the-art, and in particular, confront some of the most central problems in the field. Meeting the projects main goal, even partially, will be groundbreaking. Results of this project will facilitate the use of dynamic algorithms in real-world application domains, and will also be illuminating to other fields, such as distributed computing and fine-grained complexity.
Consequently, we believe this research has the potential of revolutionizing the field of dynamic graph algorithms, and impacting related fields, thus enriching the general landscape of computer science.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-STG

See all projects funded under this call

Host institution

TEL AVIV UNIVERSITY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 400 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 400 000,00

Beneficiaries (1)

My booklet 0 0