Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Enabling Homomorphic Encryption of Deep Neural Network Models and Datasets in Production Environments

Project description

Novel encryption and memory technology support more secure deep learning workloads

With the explosion of data available to enhance the accuracy of solutions to complex classification problems, deep learning methodologies have been instrumental in extracting features. However, together with increasing data availability has come the increasing need for data protection in the face of a growing rank of rogue actors with malicious intent. Integrating deep learning algorithms with encryption has been severely limited by the vast increase in data size of such algorithms combined with the limited memory available. The EU-funded HomE project will inspire a new class of system architectures for encrypted deep learning workloads, enabling hundreds of models to be run simultaneously with high resolution and accuracy.

Objective

Deep learning (DL) is widely used to solve classification problems previously unchallenged, such as face recognition, and presents clear use cases for privacy requirements. Homomorphic encryption (HE) enables operations upon encrypted data, at the expense of vast data size increase. RAM sizes currently limit the use of HE on DL to severely reduced use cases. Recently emerged persistent memory technology (PMEM) offers larger-than-ever RAM spaces, but its performance is far from that of customary DRAM technologies. This project aims at sparking a new class of system architectures for encrypted DL workloads, by eliminating or dramatically reducing data movements across memory/storage hierarchies and network, supported by PMEM technology, overcoming its current severe performance limitations. HomE intends to be a first-time enabler for the encrypted execution of large models that do not fit in DRAM footprints to execute local to accelerators, hundreds of DL models to run simultaneously, and large datasets to be run at high resolution and accuracy. Targeting these ground-breaking goals, HomE enters into unexplored field resulting from the innovative convergence of several disciplines, where wide-ranging research is required in order to assess current and future feasibility. Its main challenge is to develop methodology capable of breaking through the existing software and hardware limitations. HomE proposes a holistic approach yielding highly impactful outcomes that include novel comprehensive performance characterisation, innovative optimisations upon current technology, and pioneering hardware proposals. HomE can spawn a paradigm shift that will revolutionise the convergence of the machine learning and cryptography disciplines, filling a gap of knowledge and opening new horizons such as DL training on HE, currently too demanding even for DRAM. HomE, based on solid evidence, will unveil the great unknown of whether PMEM is a practical enabler for encrypted DL workloads.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-COG

See all projects funded under this call

Host institution

BARCELONA SUPERCOMPUTING CENTER CENTRO NACIONAL DE SUPERCOMPUTACION
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 680 195,00
Address
CALLE JORDI GIRONA 31
08034 BARCELONA
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 680 195,00

Beneficiaries (1)

My booklet 0 0