Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Enabling Homomorphic Encryption of Deep Neural Network Models and Datasets in Production Environments

Descripción del proyecto

Una nueva tecnología de codificación y memoria ofrece volúmenes de trabajo de aprendizaje profundo más seguras

Con la explosión de datos disponibles para mejorar la precisión de las soluciones a problemas de clasificación complejos, las metodologías de aprendizaje profundo han sido fundamentales para extraer características. Sin embargo, el aumento de la disponibilidad de los datos ha traído consigo la necesidad cada vez mayor de proteger los datos debido al creciente número de agentes fraudulentos con intenciones maliciosas. La integración de los algoritmos de aprendizaje profundo con la codificación se ha visto gravemente limitada dado el enorme aumento del tamaño de los datos de dichos algoritmos combinado a la limitada memoria disponible. El proyecto HomE, financiado con fondos europeos, inspirará una nueva clase de arquitectura de sistemas para los volúmenes de trabajo de aprendizaje profundo codificados, lo que facilitará la ejecución simultánea de centenares de modelos con alta resolución y precisión.

Objetivo

Deep learning (DL) is widely used to solve classification problems previously unchallenged, such as face recognition, and presents clear use cases for privacy requirements. Homomorphic encryption (HE) enables operations upon encrypted data, at the expense of vast data size increase. RAM sizes currently limit the use of HE on DL to severely reduced use cases. Recently emerged persistent memory technology (PMEM) offers larger-than-ever RAM spaces, but its performance is far from that of customary DRAM technologies. This project aims at sparking a new class of system architectures for encrypted DL workloads, by eliminating or dramatically reducing data movements across memory/storage hierarchies and network, supported by PMEM technology, overcoming its current severe performance limitations. HomE intends to be a first-time enabler for the encrypted execution of large models that do not fit in DRAM footprints to execute local to accelerators, hundreds of DL models to run simultaneously, and large datasets to be run at high resolution and accuracy. Targeting these ground-breaking goals, HomE enters into unexplored field resulting from the innovative convergence of several disciplines, where wide-ranging research is required in order to assess current and future feasibility. Its main challenge is to develop methodology capable of breaking through the existing software and hardware limitations. HomE proposes a holistic approach yielding highly impactful outcomes that include novel comprehensive performance characterisation, innovative optimisations upon current technology, and pioneering hardware proposals. HomE can spawn a paradigm shift that will revolutionise the convergence of the machine learning and cryptography disciplines, filling a gap of knowledge and opening new horizons such as DL training on HE, currently too demanding even for DRAM. HomE, based on solid evidence, will unveil the great unknown of whether PMEM is a practical enabler for encrypted DL workloads.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo.
La clasificación de este proyecto ha sido validada por su equipo.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2021-COG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

BARCELONA SUPERCOMPUTING CENTER CENTRO NACIONAL DE SUPERCOMPUTACION
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 2 680 195,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 2 680 195,00

Beneficiarios (1)

Mi folleto 0 0