Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Enabling Homomorphic Encryption of Deep Neural Network Models and Datasets in Production Environments

Projektbeschreibung

Neuartige Verschlüsselungs- und Speichertechnologie für mehr Sicherheit bei der Nutzung von Deep Learning

Mit der explosionsartigen Zunahme der verfügbaren Daten zur Verbesserung der Lösungsgenauigkeit bei komplexen Klassifizierungsproblemen haben sich Methoden des Deep Learning als hilfreich bei der Extraktion von Eigenschaften erwiesen. Mit der zunehmenden Verfügbarkeit von Daten steigt jedoch auch der Bedarf für deren Schutz angesichts der wachsenden Zahl krimineller Gruppen mit böswilligen Absichten. Die Integration von Deep-Learning-Algorithmen mit Verschlüsselung war bisher durch die enorme Zunahme der Datengröße solcher Algorithmen in Verbindung mit dem begrenzten verfügbaren Speicher stark eingeschränkt. Das EU-finanzierte Projekt HomE wird eine neue Klasse von Systemarchitekturen für verschlüsselte Deep-Learning-Arbeitslasten inspirieren, die es ermöglichen, Hunderte von Modellen gleichzeitig mit hoher Auflösung und Genauigkeit auszuführen.

Ziel

Deep learning (DL) is widely used to solve classification problems previously unchallenged, such as face recognition, and presents clear use cases for privacy requirements. Homomorphic encryption (HE) enables operations upon encrypted data, at the expense of vast data size increase. RAM sizes currently limit the use of HE on DL to severely reduced use cases. Recently emerged persistent memory technology (PMEM) offers larger-than-ever RAM spaces, but its performance is far from that of customary DRAM technologies. This project aims at sparking a new class of system architectures for encrypted DL workloads, by eliminating or dramatically reducing data movements across memory/storage hierarchies and network, supported by PMEM technology, overcoming its current severe performance limitations. HomE intends to be a first-time enabler for the encrypted execution of large models that do not fit in DRAM footprints to execute local to accelerators, hundreds of DL models to run simultaneously, and large datasets to be run at high resolution and accuracy. Targeting these ground-breaking goals, HomE enters into unexplored field resulting from the innovative convergence of several disciplines, where wide-ranging research is required in order to assess current and future feasibility. Its main challenge is to develop methodology capable of breaking through the existing software and hardware limitations. HomE proposes a holistic approach yielding highly impactful outcomes that include novel comprehensive performance characterisation, innovative optimisations upon current technology, and pioneering hardware proposals. HomE can spawn a paradigm shift that will revolutionise the convergence of the machine learning and cryptography disciplines, filling a gap of knowledge and opening new horizons such as DL training on HE, currently too demanding even for DRAM. HomE, based on solid evidence, will unveil the great unknown of whether PMEM is a practical enabler for encrypted DL workloads.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Das Projektteam hat die Klassifizierung dieses Projekts bestätigt.

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-ERC - HORIZON ERC Grants

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2021-COG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

BARCELONA SUPERCOMPUTING CENTER CENTRO NACIONAL DE SUPERCOMPUTACION
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 2 680 195,00
Adresse
CALLE JORDI GIRONA 31
08034 BARCELONA
Spanien

Auf der Karte ansehen

Region
Este Cataluña Barcelona
Aktivitätstyp
Research Organisations
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 2 680 195,00

Begünstigte (1)

Mein Booklet 0 0