Project description
Novel imaging to detect how single nanoparticles contribute to catalytic reactions
Nanomaterials exhibit structural and functional heterogeneity amongst individual nanoparticles. Although microscopy techniques often provide static images of their chemical composition, morphology and structure, imaging the chemical activity of single nanoparticles is still challenging. Witnessing how the structure of chemical composition of a single nanoparticle affects the rate of a catalytic reaction is the holy grail of catalysis. It is also a key enabler for the rational design of next-generation catalyst materials for use in the energy and health sectors. The EU-funded NACAREI project proposes the development of a nanoimaging method of unprecedented resolution.
Objective
How can we “see” a catalytic reaction on a single nanoparticle? While our eyes use visible light to create a vivid perception of our world, they are unable to resolve the nanoscale. Now imagine light yet allowing us to equally vividly see a chemical process and thereby enabling us to witness how structure or chemical composition of a single nanoparticle control the rate of a catalytic reaction on its surface. To date, the lack of a suitable technique prevents this ultimate level of insight at technically relevant conditions. At the same time, to gain such insight is the ultimate goal of catalysis science and a key enabler for the rational design of next-generation catalyst materials needed to address some of humanity’s grand challenges in the energy, environmental clean-up and health sectors. NACAREI therefore develops a nanoimaging method that realizes this ultimate goal. As the key ingredients for achieving the necessary unprecedented resolution, it relies on the combined nano-confinement of reaction products in, and the ultrahigh optical sensitivity of, nanofluidic structures. Particular focus will also be put on the development of methods to fabricate or trap size-, shape- and composition-controlled single sub-10 nm metal nanoparticles inside nanofluidic channels by combining key traits of top-down nanofabrication and colloidal synthesis. The developed nanoimaging platform will be applied to scientific case studies related to catalyst function with respect to the roles of particle structure, surface state, chemical composition and interaction with the support, and thereby uncover the next generation of catalyst design rules. In the long term, I envision the developed nanoscale imaging platform to enable the study of other nanoscale processes, for example in biochemistry, thereby enabling high impact also at other vibrant scientific frontiers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry
- natural sciences chemical sciences catalysis
- engineering and technology nanotechnology nano-materials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 GOTEBORG
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.