Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Photoelectrosynthetic processes in continuous-flow under concentrated sunlight: combining efficiency with selectivity

Description du projet

Une nouvelle technique combine des demi-réactions pour utiliser le CO2 et les déchets organiques à bon escient

Les technologies de conversion du CO2, un gaz à effet de serre, et des déchets organiques en produits utiles sont essentielles pour mettre l’industrie chimique sur la voie de la durabilité. Le projet SunFlower, financé par l’UE, combinera des demi-réactions d’oxydoréduction, à savoir la réduction du monoxyde de carbone et oxydation du glycérol, pour produire des produits chimiques (tels que l’éthylène et l’acide lactique) et des carburants. Afin d’atteindre leur objectif, les chercheurs mettront à profit de nouveaux assemblages de photoélectrodes et dispositifs photoélectrochimiques personnalisés. La combinaison proposée ouvrira un tout nouvel horizon dans la conversion de l’énergie solaire.

Objectif

To be the first CO2-neutral continent by 2050, Europe needs to develop and implement disruptive new technologies, based on scientific breakthroughs. In this regard, utilization of CO2 and organic waste as feedstock to generate valuable products will play a key role in turning the chemical industry on a more sustainable, circular path. In the SunFlower project, we are going to demonstrate that two high-value processes (CO2 or CO reduction and glycerol oxidation will be studied first) can be synergistically coupled to produce chemicals (such as ethylene and lactic acid) and fuels, using novel photoelectrode assemblies (both photocathodes and photoanodes), original photoelectrochemical (PEC) device architectures, and automated processes. The SunFlower project is based on the following three hypotheses:
1. Proper engineering of continuous-flow PEC cells operating under concentrated sunlight will allow current densities similar to the electrochemical (EC) methods.
2. One semiconductor alone can supply the necessary energy input for bias-free operation of PEC cells, while generating two high-value products.
3. PEC methods can provide superior selectivity compared to their EC counterparts, even at high current density operation (as the current density and potential can be decoupled).
To validate our hypotheses, we are going to use for the first time:
• The pairing of two high-value generating redox processes (none of them being H2 or O2 evolution).
• Concentrated sunlight (which has only been used for water-splitting so far).
• Custom-designed and developed PEC cells, elaborating on the photo-gas diffusion electrode concept.
• Machine learning, based on the broad dataset collected by the sensors built in the PEC system, optimizing the performance at a system level.
The proposed combination of these novel approaches will be of groundbreaking nature, therefore, it opens a whole new arena of solar energy conversion.

Institution d’accueil

SZEGEDI TUDOMANYEGYETEM
Contribution nette de l'UE
€ 1 999 750,00
Adresse
DUGONICS TER 13
6720 Szeged
Hongrie

Voir sur la carte

Région
Alföld és Észak Dél-Alföld Csongrád
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 999 750,00

Bénéficiaires (1)