Objective
Stars with masses many times that of our Sun are the direct progenitors to cosmic phenomena such as supernova explosions, black holes, and gravitational wave (GW) sources.
Through electromagnetic observations we obtain empirical information of such massive stars, however decoding the radiation reaching us through our telescopes is a highly non-trivial exercise. To constrain fundamental properties like temperatures, radii, chemical abundances, and mass loss, the observed radiation is fit by means of model stellar atmospheres.
Observations and theory show that the radiation-dominated atmospheres of massive stars are highly complex, multi-dimensional systems. However, although 3D model atmospheres of sun-like stars have already been on the market for a while, for hot, massive stars we still rely solely on results derived from inadequate 1D simulations. This severely limits our knowledge of the basic physics of massive stars and our capacity to correctly interpret observations, thereby preventing progress also in the large number of astronomical fields (e.g. black hole and GW progenitor models) that rely on a firm understanding of the massive-star life-cycle. The time is now ripe to change this.
Building on the unique expertise of the PI and his team, in a groundbreaking effort we will here develop the very first 3D model atmospheres for hot, massive stars with winds. SUPERSTARS-3D will fundamentally improve our physical understanding of massive stars, and revolutionize analysis and interpretation of their observed radiation. By further confronting our pioneering simulations directly to state-of-the-art observations, we will derive unprecedented constraints on evolution and end-of-life models.
We will develop all new models in an open-source fashion and make them easily accessible for a broad community; as such, SUPERSTARS-3D will also provide the critical cornerstone from which a large number of future scientific programs undoubtedly will be built.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3000 LEUVEN
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.