Project description
Improved approaches to approximating the behaviour of quantum many-body systems
The physical properties of quantum many-body systems are usually described using Schrödinger equations. However, it is generally impossible to solve these equations with current numerical techniques. Therefore, physicists often use approximation theories in practice, which concentrate on just a few collective behaviours of the described systems. Using mathematical analyses, they confirm whether the chosen models effectively describe the behaviour of the systems. The overall goal of the EU-funded RAMBAS project is to justify certain key effective approximations used in many-body quantum physics. Leveraging new techniques from functional analysis, spectral theory, calculus of variations and partial differential equations, RAMBAS expects to raise standard approximations of quantum systems to the next level, providing physicists with new mathematical tools.
Objective
From first principles of quantum mechanics, physical properties of many-body quantum systems are usually encoded into Schroedinger equations. However, since the complexity of the Schroedinger equations grows so fast with the number of particles, it is generally impossible to solve them by current numerical techniques.
Therefore, in practice approximate theories are often applied, which focus only on some collective behaviors of the systems in question.
The corroboration of such effective models largely depends on mathematical methods. The overall goal of RAMBAS is to justify key effective approximations used in many-body quantum physics, including the mean-field, quasi-free, and random-phase approximations, as well as to derive subtle corrections in critical regimes.
Building on my unique expertise in mathematical physics, I will 1) develop general techniques to understand corrections to the mean-field and Bogoliubov approximations for dilute Bose gases, 2) introduce rigorous bosonization methods and combine them with existing techniques from the theory of Bose gases to understand Fermi gases, and 3) employ the bosonization structure of Fermi gases to study the many-body quantum dynamics in long time scales, thus deriving quantum kinetic equations.
By applying and suitably inventing mathematical techniques from functional analysis, spectral theory, calculus of variations and partial differential equations, RAMBAS will take standard approximations of quantum systems to the next level, with special focus on those particularly challenging situations where the particle correlation plays a central role but is yet not adequately addressed. RAMBAS will thereby provide the physics community with crucial mathematical tools, which are at the same time rigorous and applicable.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.