Project description
Liquid-fluid interfaces provide a platform for shaping optical components
Fabrication of optical components mainly relies on mechanical grinding, machining and polishing, which require complex and expensive infrastructure. Modern manufacturing methods such as 3D printing can produce nearly arbitrary structures but cannot provide the required surface quality for optical applications. The EU-funded Fluidic Shaping project proposes a new method that leverages the basic physics of liquid-fluid interfaces for fabricating a wide range of high-quality optical components, without the need for any mechanical processing. The method relies on negating gravitational forces that act on the liquid, which are achieved on Earth using buoyancy forces and naturally in space flight.
Objective
We propose to develop and demonstrate a new concept that leverages the fundamental physics of interfacial phenomena to rapidly fabricate complex optical components of any size (from millimeters to meters) with sub-nanometer surface roughness, without the need for any mechanical processing such as grinding or polishing. We term our approach ‘Fluidic Shaping’ to describe its core principle – the ability to take a volume of liquid, shape it into a desired form, and finally cure it to obtain a solid object. The method relies on negating gravitational forces that act on the liquid, which we achieve on Earth using buoyancy forces, and which can be naturally achieved in space flight. By dictating the boundary conditions of the liquid, we vary the minimum energy state of the system, and drive the liquid interface into a desired shape. The proposed project is composed of five main aims: (1) development of a theoretical framework that would describe the range of optical surfaces that could be produced and provide engineering guidelines for the rest of the project, (2) development of a stand-alone device for fabrication of high quality corrective lenses, (3) development of methods for fabrication of high precision optics, and expansion of the range of materials that could be used, (4) demonstration of in-space manufacturing of optical components, and (5) development of approaches for deployment of very large (meters) fluidic lenses.
These aims serve to put in place the basic and foundational knowledge that could enable transformative changes in multiple fields: (a) rapid prototyping of optical components – by enabling fabrication of custom, high precision optics in minutes, (b) access to corrective eyewear in low resource settings – by enabling fabrication of quality lenses without heavy infrastructure, (c) space exploration – by enabling in-space manufacturing of optics, and (d) astronomy – by enabling large space telescopes that overcome current launch constraints.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.