Project description
Responsive materials add a shield for nanoelectronics devices
Acoustic phonons, coherent movements of lattice atoms out of their equilibrium positions, usually compromise the performance of electronic and optoelectronic devices. These vibrations cause the atoms in a solid to oscillate, causing other flowing electrons to bounce off these oscillations and change direction. The EU-funded T-Recs project will take a radically different and counter-intuitive approach to the design of nanophotonics devices by incorporating responsive materials that change their elastic properties under external stimuli and control lattice vibrations, turning them into an advantage. Certain compounds, such as vanadium dioxide, will be integrated into nanophotonic semiconductors owing to the ability to trigger a phase transition thermally, optically or electrically.
Objective
In solid-state physics, all the properties determined by the atoms' position are susceptible to be modified by acoustic phonons. Acoustic phonons are usually seen as a primary source of unwanted effects in electronics, optoelectronics, and quantum technologies based on solid-state platforms. This project proposes a series of tunable nanodevices where acoustic-phonons constitute, instead, a central resource to unveil wavelength conversion phenomena, transfer information, and simulate systems difficult or impossible to study in optics and electronics.
The current trend in nanophononics is to engineer acoustic nanodevices to shape the local acoustic density of states, tailor the light-matter interaction, or enhance the interactions with other systems based on static and predetermined fixed-function nanostructures. This project takes a radically different direction by incorporating responsive materials that change their elastic properties under external stimuli. GeSbTe compounds and vanadium dioxide present phase transitions that can be triggered thermally, optically, or electrically and have associated ultrafast changes in their elastic properties. These materials, widely used in active photonics and electronics, will be integrated into nanophononic semiconductor and oxide-based resonators working in the GHz-THz range.
The project is organized around three major challenges: i) To develop hybrid tunable acoustic-phonon resonators and transducers based on materials presenting structural phase transitions. ii) To develop reconfigurable nanophononic lattices (i.e. artificial graphene) formed by coupled resonators. And iii) To demonstrate novel acoustic-phonon wavelength conversion phenomena, simulate time-dependent Hamiltonians, and develop dynamical acoustic phonon devices. Using dynamical structures to control acoustic phonons in the GHz-THz range will enable a new dimension in the solid-state physics toolbox.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics optoelectronics
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences physical sciences atomic physics
- natural sciences physical sciences electromagnetism and electronics semiconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.