Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Small Flows with Big Consequences: Wave-, Turbulence- and Shear current-Driven mixing under a water surface

Description du projet

Comprendre les flux sous la surface des océans

Les océans recouvrent plus de 70 % de la surface de la Terre et jouent un rôle déterminant dans la météo et le climat de la planète. Ils stockent le rayonnement solaire et distribuent la chaleur, modulent les flux de gaz et déterminent les profils climatiques à l’aide de leurs courants. Les ondes, les turbulences et les courants de cisaillement (WTS pour «waves, turbulence, and shear currents») de surface dans la couche supérieure de l’océan sont essentiels au maintien de ces fonctions. Pourtant, les WTS ne sont pas modélisés avec précision dans les simulations climatiques, ce qui engendre des erreurs significatives. Le projet WaTurSheD, financé par l’UE, comblera cette importante lacune grâce à une campagne expérimentale exhaustive et méthodique visant à contrôler et à faire varier systématiquement chaque paramètre WTS. Il produira la toute première modélisation d’un mélange favorisé par les WTS dans la couche supérieure de l’océan en utilisant des données empiriques directes.

Objectif

The triple interactions of surface waves, turbulence, and shear currents (WTS) in the upper layer of the ocean play a key role in the Earth’s climate and ecology by controlling fluxes of heat, gas, and momentum between ocean and atmosphere. Climate simulations have large systematic errors because the mixing of waters due to WTS flow is not properly modelled, yet these flows remain little investigated and poorly understood. We urgently need to learn how WTS mixing depends on flow parameters, but none of today's research approaches can produce the empirical data which is needed.

WaTurSheD presents the only practical way out of this stalemate: an extensive experimental campaign where each WTS parameter is individually controlled and systematically varied. I will make use of the new, large water channel laboratory at NTNU, the only facility where such an experimental campaign is currently possible, and combine experiments with new theory and a novel data analysis method. Through WaTurSheD the WTS-driven mixing in the upper ocean can for the first time be modelled based on direct empirical evidence.

WaTurSheD is a unique opportunity for progress, combining my group's specialised expertise on wave-current interactions through both theory and experiment, and one-of-a-kind laboratory where my team can create a faithful, fully tuneable scale model of upper ocean WTS flow. The theory framework for ocean waves and currents must be advanced in order to accommodate the new insights, a task I will attend to myself. We will develop a completely new way to analyse near-surface turbulence: By detecting the imprints they leave on the surface using a computer vision technique, the most essential turbulent structures can be selected, allowing trends in WTS data to emerge which would otherwise be obscured by fast fluctuations. All WaTurSheD's components will unite towards its final goal: a universal scaling law for WTS flows valid from centimetres to hundreds of metres.

Régime de financement

HORIZON-ERC - HORIZON ERC Grants

Institution d’accueil

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Contribution nette de l'UE
€ 1 958 705,00
Adresse
HOGSKOLERINGEN 1
7491 Trondheim
Norvège

Voir sur la carte

Région
Norge Trøndelag Trøndelag
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 958 705,00

Bénéficiaires (1)