European Commission logo
English English
CORDIS - EU research results
CORDIS

Universal processing route for high-performance nanostructured yarns

Project description

A universal approach to producing nanomaterial yarns

Nanomaterials serve as the fundamental building blocks for various energy applications, presenting excellent optoelectronic, catalytic, transport and structural properties. The EU-funded UNIYARNS project aims to establish a universal route for assembling 1D nanomaterials into kilometric yarns for use in energy applications, reaching high volume fractions without using solvents or polymers. The proposed strategy entails growing ultra-long nanomaterials with a technique called floating catalyst chemical vapour deposition. Sufficiently high nanoparticle concentrations are needed to form aerogels suspended in the gas phase and then be directly drawn as continuous, macroscopic yarns.

Objective

Yarns are a natural architecture to assemble small building blocks into macroscopic objects and are thus woven in our history, from fabrics of natural fibres in ancient times to fibres of synthetic polymers developed in the 20th century for lightweight applications. Humankind’s new building blocks are nanomaterials, with superlative properties in all areas (optoelectronic, catalytic, transport, structural) relevant for global challenges related to energy use, storage and conversion. UNIYARNS proposes a new universal route for gas-phase assembly of one-dimensional nanomaterials into kilometric yarns, applicable to materials central to energy applications (metal oxides, semiconductors and semi-metals), and reaching high volume fractions without use of processing solvents or polymers. The strategy is to grow ultra-long nanomaterials by atmospheric-pressure floating catalyst chemical vapour deposition (FCCVD) at sufficiently high concentration for them to entangle and form aerogels suspended in the gas phase that can then be directly drawn as continuous, macroscopic yarns. The first objective of the project is to demonstrate the generality of the FCCVD synthesis process, with a particular focus on metal oxide nanowires. A further objective is to study the kinetics and reaction paths in 1D nanomaterials synthesis with floating catalyst in order to understand the exceptionally fast growth rate inherent to this synthesis mode and to explore its boundaries of selectivity and conversion. The next objective is to describe aerogel formation by determining factors at the aerogel network level and at the molecular-scale level that govern gas-phase assembly. The final objective is to establish clear structure-property relations for nanostructured yarn systems to overcome the current envelope of materials properties through the low charge transport resistance and high toughness of their network structure.

Host institution

FUNDACION IMDEA MATERIALES
Net EU contribution
€ 1 999 338,00
Address
CALLE ERIC KANDEL 2 PARQUE CIENTIFICO Y TECNOLOGICO TECNOGETAFE
28906 Getafe
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Research Organisations
Links
Total cost
€ 1 999 338,00

Beneficiaries (1)