European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Non-Hermitian elastodynamics

Descripción del proyecto

La mecánica cuántica y la elastodinámica en los metamateriales

Los metamateriales (materiales de ingeniería con propiedades exóticas que no se observan en la naturaleza) están a la vanguardia de la investigación multidisciplinar en muchos campos. En los últimos años, los metamateriales que alteran artificialmente la propagación de las ondas —incluidas las sonoras, las acuáticas y las luminosas— han atraído cada vez más atención, y la modificación de las ondas elásticas resulta especialmente interesante. El acoplamiento entre las ondas de cizalla y de presión, que es exclusivo de la elastodinámica, puede minimizar o eliminar la energía externa de los procesos, lo que genera fenómenos exóticos. El equipo del proyecto EXCEPTIONAL, financiado con fondos europeos, investigará el acoplamiento de las ondas de cizalla y de presión con un formalismo mecánico cuántico que describe sistemas no conservadores que intercambian energía con su entorno. La comprensión de la mecánica de la propagación de las ondas en los metamateriales facilitará el diseño racional de dispositivos de formación de ondas.

Objetivo

The properties of artificial materials can be tailored to exhibit extraordinary properties by cleverly engineering their composition. The development of such metamaterials is a prominent thrust in engineering today. One of the greatest challenges is to engineer metamaterials that manipulate waves by design. Of particular interest are elastic waves, since numerous mechanical applications require their control; vibration isolation, ultrasonography, energy harvesting and cloaking, to name a few. The forefront of research in wave control emerged from a seemingly unrelated theory, quantum mechanics, with the development of its non-Hermitian formalism, describing nonconservative systems that exchange energy with their environment. By drawing analogies between this formalism and those of classical systems, researchers have discovered phenomena that defy intuition, phenomena such as zero reflection and chiral absorption, and have exploited them to control light, sound, and elastic waves. Can we go beyond these analogies?

I suggest that the answer is hidden in the tensorial nature of elastodynamics, a nature that is unparalleled in other physics. This conjecture is motivated by my group's recent discovery that even conservative stratified solids can generate non-Hermitian features, such as negative refraction and exceptional points. The mechanism that obviates external energy is the coupling between shear and pressure waves that is unique to elastodynamics. What happens when judiciously exploiting this distinctive mechanism together with concepts from non-Hermitian quantum mechanics? In tackling this question I expect to unveil novel phenomena that are inaccessible in other physics. Understanding the mechanics will lead to exceptional ways of shaping waves, thereby benefiting engineering applications that require robust control of elastic motion.

Institución de acogida

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Aportación neta de la UEn
€ 1 594 166,00
Dirección
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 594 166,25

Beneficiarios (1)