European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Non-Hermitian elastodynamics

Descrizione del progetto

La meccanica quantistica e l’elastodinamica nei metamateriali

I metamateriali, ovvero materiali ingegnerizzati dotati di proprietà esotiche inesistenti in natura, si trovano in prima linea nella ricerca multidisciplinare svolta nell’ambito di numerosi campi. I metamateriali che alterano in modo innaturale la propagazione di varie tipologie di onde, tra cui quelle sonore, idriche e luminose, hanno attirato una crescente attenzione negli ultimi anni. In tal senso, di particolare interesse risulta la modifica delle onde elastiche. L’accoppiamento tra onde trasversali e di pressione, che si verifica esclusivamente nell’elastodinamica, può ridurre al minimo o eliminare l’energia esterna dai processi, generando fenomeni esotici. Il progetto EXCEPTIONAL, finanziato dall’UE, approfondirà questo tipo di accoppiamento, congiuntamente a un formalismo meccanico quantistico che descrive i sistemi non conservativi in grado di scambiare energia con il proprio ambiente. La comprensione dei meccanismi alla base della propagazione delle onde nei metamateriali sosterrà la progettazione razionale di dispositivi volti a plasmare le onde stesse.

Obiettivo

The properties of artificial materials can be tailored to exhibit extraordinary properties by cleverly engineering their composition. The development of such metamaterials is a prominent thrust in engineering today. One of the greatest challenges is to engineer metamaterials that manipulate waves by design. Of particular interest are elastic waves, since numerous mechanical applications require their control; vibration isolation, ultrasonography, energy harvesting and cloaking, to name a few. The forefront of research in wave control emerged from a seemingly unrelated theory, quantum mechanics, with the development of its non-Hermitian formalism, describing nonconservative systems that exchange energy with their environment. By drawing analogies between this formalism and those of classical systems, researchers have discovered phenomena that defy intuition, phenomena such as zero reflection and chiral absorption, and have exploited them to control light, sound, and elastic waves. Can we go beyond these analogies?

I suggest that the answer is hidden in the tensorial nature of elastodynamics, a nature that is unparalleled in other physics. This conjecture is motivated by my group's recent discovery that even conservative stratified solids can generate non-Hermitian features, such as negative refraction and exceptional points. The mechanism that obviates external energy is the coupling between shear and pressure waves that is unique to elastodynamics. What happens when judiciously exploiting this distinctive mechanism together with concepts from non-Hermitian quantum mechanics? In tackling this question I expect to unveil novel phenomena that are inaccessible in other physics. Understanding the mechanics will lead to exceptional ways of shaping waves, thereby benefiting engineering applications that require robust control of elastic motion.

Istituzione ospitante

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Contribution nette de l'UE
€ 1 594 166,00
Indirizzo
SENATE BUILDING TECHNION CITY
32000 Haifa
Israele

Mostra sulla mappa

Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 594 166,25

Beneficiari (1)