Project description
Extending deep learning to the meta level
Deep learning is a subset of machine learning that teaches computers to draw conclusions as humans would by continually analysing data. The field has led to remarkable progress in computer vision, speech recognition, natural language processing and reinforcement learning. The EU-funded DeepLearning 2.0 project aims to take deep learning to the next level. It will propose metal-level learning methods that improve the results and performance of learning algorithms. The new methods will help create novel, customised deep learning pipelines with no handcrafted elements, which will be more accurate, simpler to use and require less time to train. To demonstrate the viability of the proposed methods, researchers will implement the new customised deep learning pipelines to electroencephalography decoding and RNA folding.
Objective
Deep learning has revolutionized many fields, such as computer vision, speech recognition, natural language processing, and reinforcement learning. This success is based on replacing domain-specific hand-crafted features with features that are learned for the particular task at hand. The logical step to take deep learning to the next level is to also (meta-)learn other hand-crafted elements of the deep learning pipeline. We therefore propose to develop meta-level learning methods for the creation of novel customized deep learning pipelines, by means of:
1. Hierarchical neural architecture searchfor learning qualitatively new architectures and architectural building blocks from scratch;
2. Learning of optimizers and hyperparameter adaptation policies that adapt totheir context in order to converge faster and more robustly;
3. Learning the data to train on, to remove the need for large sets of labelled data; and
4. Bootstrapping from prior design efforts to increase efficiency and make an integrative design of architectures, optimizers, hyperparameter adaptation policies, and pretraining tasks feasible in practice.
These advances will allow the next generation of deep learning pipelines to achieve higher accuracy, lower training time, and improved ease-of-use (democratization of deeplearning). They will also allow a customization to particular design contexts, including additional objectives next to accuracy (such as robustness, memory requirements, energy consumption, latency, interpretability, training cost, uncertainty estimation, and algorithmic fairness) in order to facilitate trustworthy AI. In order to demonstrate the effectiveness of these methods, we plan to develop:
5. New state-of-the-art customized deep learning pipelines for various applications, including EEG decoding, RNA folding, and improving the reinforcement learning pipeline and deep learning on tabular data.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
79098 Freiburg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.