Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

DeepLearning 2.0: Meta-Learning Qualitatively New Components

Descripción del proyecto

Llevar el aprendizaje profundo a la metaescala

El aprendizaje profundo es una subdisciplina del aprendizaje automático que enseña a los ordenadores a sacar conclusiones de la misma manera que lo haría una persona a través del análisis continuo de datos. Esta subdisciplina ha favorecido un progreso notable en la visión artificial, el reconocimiento de voz, el procesamiento del lenguaje natural y el aprendizaje por refuerzo. El objetivo del proyecto DeepLearning 2.0 financiado con fondos europeos, es llevar el aprendizaje profundo al siguiente nivel. Propondrá métodos de aprendizaje a metaescala que mejoren los resultados y el rendimiento de los algoritmos de aprendizaje. Los nuevos métodos ayudarán a crear procesos de aprendizaje profundo novedosos y personalizados sin elementos manuales, que serán más precisos, más fáciles de usar y que requerirán menos tiempo de entrenamiento. Para demostrar la viabilidad de los métodos propuestos, los investigadores aplicarán los nuevos procesos de aprendizaje profundo personalizados a la descodificación de electroencefalogramas y al plegamiento del ARN.

Objetivo

Deep learning has revolutionized many fields, such as computer vision, speech recognition, natural language processing, and reinforcement learning. This success is based on replacing domain-specific hand-crafted features with features that are learned for the particular task at hand. The logical step to take deep learning to the next level is to also (meta-)learn other hand-crafted elements of the deep learning pipeline. We therefore propose to develop meta-level learning methods for the creation of novel customized deep learning pipelines, by means of:
1. Hierarchical neural architecture searchfor learning qualitatively new architectures and architectural building blocks from scratch;
2. Learning of optimizers and hyperparameter adaptation policies that adapt totheir context in order to converge faster and more robustly;
3. Learning the data to train on, to remove the need for large sets of labelled data; and
4. Bootstrapping from prior design efforts to increase efficiency and make an integrative design of architectures, optimizers, hyperparameter adaptation policies, and pretraining tasks feasible in practice.
These advances will allow the next generation of deep learning pipelines to achieve higher accuracy, lower training time, and improved ease-of-use (democratization of deeplearning). They will also allow a customization to particular design contexts, including additional objectives next to accuracy (such as robustness, memory requirements, energy consumption, latency, interpretability, training cost, uncertainty estimation, and algorithmic fairness) in order to facilitate trustworthy AI. In order to demonstrate the effectiveness of these methods, we plan to develop:
5. New state-of-the-art customized deep learning pipelines for various applications, including EEG decoding, RNA folding, and improving the reinforcement learning pipeline and deep learning on tabular data.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo.
La clasificación de este proyecto ha sido validada por su equipo.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2021-COG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 2 000 000,00
Dirección
FAHNENBERGPLATZ
79098 Freiburg
Alemania

Ver en el mapa

Región
Baden-Württemberg Freiburg Freiburg im Breisgau, Stadtkreis
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 2 000 000,00

Beneficiarios (1)

Mi folleto 0 0