Project description
New material for cooler data centres
There’s nothing cool about cooling data centre IT equipment; it can take up to 40 % of a typical office building’s total energy consumption. Heat removal and transport are the main challenges. The EU-funded ThermoDust project will solve the thermal control problem. Its solution lies in new flexible materials that can be processed with additive manufacturing which display unprecedented thermal performances. Taking micron-sized metallic powder (typically used in powder bed fusion or cold spray processes) as its starting point, the project will explore the addition of a performing 2D-material phase to the feedstock powder. The ultimate aim is to engineer a radically new material with outstanding heat-transport performance.
Objective
Thermal management is in the strong need for new material’s innovation. Stunningly, large data centres spend up to 40% of the total energy consumption to run the cooling system. Other examples are in the cooling of electronics and in the thermal control of electric vehicles batteries. Here, the development of innovative solutions is hindered by heat removal and transport unsolved problems; the design aspect of thermal control devices has achieved so much but is already under pressure. New flexible materials, that can be processed with Additive Manufacturing (AM) and with thermal performances not yet seen, are now strongly required. In ThermoDust we will achieve a real breakthrough in this direction; we are set to join nanotechnology, process engineering with scalable industrial AM for the specific purpose of solving the thermal control problem; this is not an incremental step as it has not been done before. Our starting ground is micron-sized metallic powder, typically used in Powder Bed Fusion or Cold Spray processes. We will explore the addition of a performing 2D-material phase to the feedstock powder by using innovative techniques, with the final aim of engineering a radically new material (ThermoDust) with outstanding heat-transport performance. We will also prove it will be possible to use AM to process ThermoDust in order to form demonstrator devices that will outperform the current means of heat dissipation. And we intend to prove this in 3 key sectors: electronics, EV vehicles and aerospace with the development of specific proofs of concept. We are confident to be able to achieve the overall objectives through a sophisticated multi-disciplinary methodology that will rely upon scientific investigations, and the exploitation of discoveries to establish Europe as a leader in heat management, paving the way for innumerable new innovative products and markets in ICT, aerospace, electric vehicles and related areas.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.3.1 - The European Innovation Council (EIC)
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.3.1.1 - The Pathfinder for Advanced Research
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-EIC - HORIZON EIC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EIC-2021-PATHFINDEROPEN-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
D02 CX56 Dublin
Ireland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.