Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Printed Computing: Enabling Extremely Low Cost Pervasive Near Sensor Computing

Project description

Accurate, reliable and energy-efficient mini-computers in healthcare and consumer goods

Computer manufacturing has made great strides over the last 50 years, yet the process is costly and time-consuming. Printing out computer components could revolutionise the semiconductor industry. The EU-funded PRICOM project plans to develop new computing architectures that are no longer based on conventional silicon chips but on the principle of additive manufacturing. Sensors equipped with printed electronics will be implemented directly in products, enabling users to better process and visualise information. Potential applications include short-lived consumer goods, such as customised medical products. Special focus will be placed on tackling printing variations, an inherent feature of additive manufacturing.

Objective

A large number of important domains - such as fast moving consumer goods and personalized medicine - have still not seen the benefits of computing, mainly due to high production costs of rigid silicon technologies. Printed electronics based on additive manufacturing processes holds promise of meeting cost and conformity needs of such applications. However, the realization of traditional digital processor architectures is infeasible due to constraints of low-cost manufacturing, such as form factor, low device count, large feature sizes, and high variations. The fundamental research question, hence, is how to perform accurate, reliable and energy-efficient classification computing to meet target applications requirements within the constraints of additive printed manufacturing.
The aim of PRICOM is to make breakthroughs by developing unconventional mixed-signal classifier computing paradigms together with their hardware realization and mapping based on additive printing technologies. This enables to significantly reduce the hardware footprint, and directly process analog sensory inputs while achieving high classification accuracy. Nevertheless, it is a major challenge as analog computing is very sensitive to variations, and at the same time additive manufacturing is inherently prune to printing variations. I aim at closing this gap by 1) utilizing the inherent tolerance of neuromorphic computing to variations with special hardware primitive design and training algorithms, 2) designing novel variation-aware physical design algorithms, and 3) developing an iterative tuning flow exploiting unique features of additive manufacturing. The feasibility of multi-disciplinary research of PRICOM is underpinned by my unique cross-layer expertise and will be tested by fabrication-based demonstration of printed computing systems. PRICOM can enable proliferation of computing in consumer market and personalized medicine, bringing economical gains and improving quality of life.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-ADG

See all projects funded under this call

Host institution

KARLSRUHER INSTITUT FUER TECHNOLOGIE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 499 286,00
Address
KAISERSTRASSE 12
76131 Karlsruhe
Germany

See on map

Region
Baden-Württemberg Karlsruhe Karlsruhe, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 499 286,25

Beneficiaries (1)

My booklet 0 0