Project description
Toward a unified and universal redox scale relevant for all solvents
Oxidation-reduction reactions, known as redox reactions, underly a plethora of applications among which are electrocatalysis and electrochemical energy storage. In these reactions, a transfer of electrons between two species results in the oxidation of one (loss of one or more electrons) and the reduction of the other (gain of one or more electrons). The electrochemical potential of the reactants is a measure used to predict the feasibility of a redox reaction. It is currently quantified on the basis of the specific solvent in which the reaction is to take place. The EU-funded InnoChem project will establish a unified redox scale to compare electrochemical potentials in all media.
Objective
The elementary steps underlying the reversible addition and removal of electrons from matter M Metals, Molecules or Materials are the fundament to describe redox chemistry, electrocatalysis and electrochemical energy storage. However, the electrochemical potentials of reaction partners are only comparable within one solvent. This is a consequence of the solvent specific standard states.
For this reason, it is a Grand Challenge to establish a Unified Redox Scale to compare electrochemical potentials in all media without extra-thermodynamic assumptions. To achieve this, we use an ideal Ionic Liquid Salt Bridge setup to measure the Gibbs transfer energies between different solvents. The measured values, corrected for residual liquid junction potential contributions, will be used to directly connect potentials to the aqueous scale. This unifying solvent-independent scale will allow for knowledge-based comparison and selection of reagents for redox reactions in the next sections.
Reagents for deelectronation (removal of an e) at high potential are scarcely available. Hence, we prepare perhalogenated radical cation salts that act as innocent Deelectronators (iD+) with high unified redox potentials. An iD+ converts a given neutral M to the naked cation M+. iD+-salts are straightforwardly accessible and room-temperature stable materials. Conveniently, they are in part weighable in air. Combined with suitable non-reactive, weakly coordinating but polar innocent solvents and robust weakly coordinating anions, reactive cation salts are accessible.
Such reversible iD+-mediated redox-processes at high potential are appealing for electrosynthesis and -catalysis. To generate, study and apply these systems, we introduce a generally applicable innocent solvent family compatible with the high potential of iD+ and M+ also with commercially available anions. Suitable iD+/solvent couples for targeted reactions are selected based on their position on the unified redox scale.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
79098 Freiburg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.