European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Laser biofabrication of 3D multicellular tissue with perfusible vascular network

Descripción del proyecto

Biofabricación fiable de tejidos vascularizados tridimensionales

La producción de órganos vascularizados tridimensionales (3D) sigue siendo el principal reto de la biofabricación y la ingeniería tisular. Reproducir la perfusión vascular funcional con las grandes arterias y venas y las arteriolas, vénulas y capilares a escala micrométrica requiere estructuras multiescala de alta resolución. La combinación de bioimpresión láser avanzada con una técnica de polimerización de dos fotones permite generar un sistema vascular completo. Las conexiones de las arterias y las venas con el árbol vascular artificial son requisitos cruciales para conseguir un sistema de flujo pulsátil fiable. El objetivo del proyecto Laser-Tissue-Perfuse, financiado con fondos europeos, es generar un árbol con capilaridad vascular en 3D con perfusión en estructuras de tejidos cardíacos y cutáneos a escala centimétrica utilizando metodologías de biofabricación desarrolladas para su amplia aplicación en todo el campo de la medicina regenerativa.

Objetivo

Building 3D vascularised organs remains the major unsolved challenge to be overcome in biofabrication and tissue engineering. Establishing blood vessels capable of efficient transport of gas, nutrients, and metabolites to and from cells is a prerequisite for the survival of tissue constructs, both in vitro and when transplanted in vivo. High resolution multi-scale constructs are necessary to replicate the complexity of functional vascular perfusion from large scale arteries and veins to micron scale arterioles, venules and capillaries. Using a unique combination of advanced laser bioprinting with two-photon polymerisation technique a full vascular system may be generated by exploring different scaffold-based, scaffold-free, sacrificial, and hybrid approaches for the generation of a complex vasculature with functional layers and extra-cellular matrix.
The connection of artery and vein with engineered vascular tree including capillaries have received little research attention despite the crucial requirement to reliably connect perfusion inlets and outlets to a pulsatile flow system. This is essential not only to perfuse tissue, but to stimulate and control maturation of engineered tissue in reaching the condition required to function with realistic biophysical characteristics of thick tissue outside of a closed incubation chamber. Computer-controlled generation of a 3D vascular capillary tree and achieving its perfusion in centimetre scale cardiac and skin tissue constructs using the developed biofabrication methodologies will represent a seminal breakthrough in organ regeneration with widespread long-term impacts across the field of regenerative medicine.

Institución de acogida

GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
Aportación neta de la UEn
€ 1 702 036,50
Dirección
WELFENGARTEN 1
30167 Hannover
Alemania

Ver en el mapa

Región
Niedersachsen Hannover Region Hannover
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 702 036,50

Beneficiarios (2)