Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Modelling of three-phase flows with catalytic particles

Descripción del proyecto

Modelos pioneros de flujos multifásicos y multicomponentes en reactores industriales

El diámetro de los reactores industriales oscila entre 5 y 10 m. Dentro del enorme volumen que encierran sus paredes, diminutas partículas de catalizador sólido del orden de 100 a 200 µm se mezclan con productos químicos en las fases líquida y gaseosa, lo que permite una plétora de reacciones químicas con importancia socioeconómica. Estos flujos densos, catalíticos, multicomponentes y multifásicos de elementos a escalas muy diferentes son muy complejos y su control requiere una modelización precisa. Sin embargo, se ha avanzado poco en la modelización de flujos trifásicos. En el proyecto MOD3CAT, financiado por el Consejo Europeo de Investigación, se desarrollarán modelos imprescindibles que incorporen transformaciones químicas multicomponente que, después, se validarán con resultados experimentales. El modelo de flujos trifásicos permitirá optimizar los procesos y su eficacia, lo que hoy día constituye todo un reto.

Objetivo

This proposal is on modelling of 3 phase gas-solid-liquid multi-component flows with catalyst particles, which are frequently encountered in industrial applications, but have not been tackled fundamentally before due to their complexity.

Dense multi-phase flows have been intensively researched because of their scientifically interesting transport phenomena and industrial applications. Considerable progress has been made for gas-solid and gas-liquid two-phase flows. However, catalytic multicomponent three-phase flows have received relatively little attention despite their importance for the production of clean synthetic fuels, base chemicals, and many other products. Multiphase transport phenomena in such systems are poorly understood due to their complexity. Therefore the design of processes is cumbersome. In addition, the process operation is often far from optimal in terms of energy and feedstock utilization. Therefore significant improvements are required to boost the efficiency of three-phase systems, which demands for a better understanding of the transport fundamentals and complex interplay with chemical reactions and availability of predictive tools.

The main underlying problem is the wide range of length scales: suspended catalyst particles have a size of 100-200 m, whereas the diameter of industrial reactors is 5-10 meters. To tackle this problem a multi-scale modeling strategy is required. At the finest scale detailed models take into account the interaction between the phases. These interactions are condensed in closure laws for mass, momentum and heat exchange that feed so-called Euler-Lagrange models, which can then be used to compute the flow structures on a much larger (industrial) scale. The key innovative aspect of this proposal is the integrated approach including incorporation of multi-component chemical transformations and the validation on basis of one-to-one comparison of the of the computational results with experiments.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. La clasificación de este proyecto ha sido validada por su equipo.

Régimen de financiación

HORIZON-ERC - HORIZON ERC Grants

Institución de acogida

TECHNISCHE UNIVERSITEIT EINDHOVEN
Aportación neta de la UEn
€ 2 499 481,00
Dirección
GROENE LOPER 3
5612 AE Eindhoven
Países Bajos

Ver en el mapa

Región
Zuid-Nederland Noord-Brabant Zuidoost-Noord-Brabant
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 2 499 481,00

Beneficiarios (1)