Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Sizes Matter: The Dust Size Distribution during Planet Formation

Descripción del proyecto

Mejores modelos para demostrar cómo se agregaron las partículas de polvo para dar lugar a planetas

Las primeras semillas de los planetas constan de partículas de polvo micrométricas, que chocan entre sí cuando orbitan una estrella y forman cúmulos. Sin embargo, aún se desconoce cómo estos granos de polvo se convirtieron en los componentes básicos de los planetas. En el proyecto DUSTSPEC, financiado con fondos europeos, se llevarán a cabo simulaciones hidrodinámicas para modelizar la evolución del polvo. Sus investigadores reconstruirán la distribución a tamaño completo a partir de observaciones fragmentadas, lo que evitará costosas observaciones de múltiples longitud de onda. También compararán las distribuciones de polvo y gas a través de la observación de discos protoplanetarios y la composición de los cuerpos del Sistema Solar.

Objetivo

Planets form in discs of gas and dust around young stars. Within these discs, micron-sized dust particles need to clump together to grow 14 orders of magnitude to form Earth-like planets as well as the cores of giant planets. It is a major challenge to understand dust growth from start to finish. State of the art observations provide spectacular glimpses of the dust distribution at a limited range of sizes: ALMA produces images of the thermal emission of mm-sized dust, while instruments such as SPHERE probe the distribution of much smaller particles. However, for a comprehensive theory of planet formation, we need to understand the process from start to finish, from micron-sized to planet-sized. This is therefore the story of the dust size distribution: how many dust specks, pebbles and boulders are present? While there are large size ranges that are out of reach observationally, in this project we will exploit the fact that all dust sizes are coupled to the gas via friction to take a panoptic view of the size distribution for the first time. Since the gas feels friction from all dust sizes, the size distribution is encoded in the gas kinematics, and therefore in every single dust size as well. We will perform hydrodynamical simulations including the full dust size distribution to write the polydisperse story of planet formation. We aim to reconstruct the full size distribution from sparse observations, thereby avoiding the need for expensize multi-wavelength observations. We will compare dust and gas distributions with observations of protoplanetary discs as well as the composition of Solar system bodies. We will use a novel numerical method that allows us to perform these computationally expensive simulations, and employ machine learning to speed up the calculations. This way, we will for the first time be able to build up a complete picture of how dust particles grow into planets and construct a comprehensive model of planet formation.

Institución de acogida

TECHNISCHE UNIVERSITEIT DELFT
Aportación neta de la UEn
€ 2 314 680,00
Dirección
STEVINWEG 1
2628 CN Delft
Países Bajos

Ver en el mapa

Región
West-Nederland Zuid-Holland Delft en Westland
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 2 314 680,00

Beneficiarios (1)