Project description
Mechanistic insight into mitochondrial gene expression
Apart from nuclear DNA, eukaryotic cells contain mitochondrial DNA, which encodes subunits of the electron transport chain enzymes. Although this clearly indicates the importance of mitochondrial gene expression for cellular metabolism, little mechanistic insight is available on how it is achieved and regulated. Mitochondrial gene translation is already known to undergo regulation through the action of nuclear-encoded factors. Funded by the European Research Council, the MiXpress project proposes to investigate the different steps in the mitochondrial gene expression process. Emphasis will be given on the cooperation with nuclear-encoded components to understand how cells respond to energy needs.
Objective
Mitochondrial gene expression is essential for cellular metabolism and energy supply since 13 core subunits of the OXPHOS system are encoded on the mitochondrial genome. Despite its importance for cellular function, mitochondrial gene expression (mitoGE) and its regulation are not understood at a mechanistic level. To this end, we demonstrated that mitochondrial translation is prone to regulation, responding to influx of nuclear-encoded proteins . However, the mechanisms that regulate gene expression in mitochondria remain unknown. A lack of suitable experimental approaches to modulate mitoGE hampers progress in our understanding. Here I propose a project that takes the next big step towards understanding the mechanisms of mitochondrial gene expression. Our recent work on an in organello system to target mitoGE in a transcript-specific manner provides the bases for the challenging project proposed here, which aims to solve long-standing questions: First, we will dissect mitochondrial transcript interactomes and their spatial orchestration to understand basic principles of RNA abundance, organization in granules, and cross communication. Second, we are now able to investigate translation in the context of the inner membrane with transcript-specific resolution and thereby identify liaising factors involved in ribosome recruitment and membrane insertion and regulation. Third, we will extend our strategy towards an in vivo transcript-specific silencing approach to define retrograde signaling pathways that integrate mitoGE into cellular contexts. The combination of functional analyses carried out in organello and in vivo will provide unprecedented insights into components and mechanism of mitoGE and reveal how two genetically independent systems cooperate to build a functional metabolic pathway able to respond to energetic requirements and challenges.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences genetics RNA
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
37075 Goettingen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.