Objective
Self-organisation is a defining feature of living systems and entails complex interplay between multiple parameters across various spatio-temporal scales. Using pre-implantation mouse embryos as a model system, our studies revealed a principle of regulative development, in which feedback between cell fate, polarity and mechanics ensures robust control of embryo size, shape and pattern. However, as embryos undergo implantation, this self-organisation mechanism has to be integrated in its spatio-temporal context. In this project, we aim to understand how developmental mechanisms are coordinated in space and time. The peri-implantation mouse embryo is an attractive system in which to study this coordination, as it begins to interact with uterine tissues, marks a key transition in morphogenesis, cell cycle and growth, and exhibits a remarkable capacity for size regulation. We recently developed an ex vivo 3D culture, engineered uterus and light-sheet microscopy to recapitulate morphogenesis and embryo-uterus interactions, and analyse changes in cell shape, fate, polarity and mechanics. Using these new methods, we aim to mechanistically understand the transformation from blastocyst to egg cylinder as embryonic-extraembryonic tissues interact. We will use embryo size control as a paradigm to study the coordination of developmental programmes in space and time. At the cellular level, we will identify what triggers the transition from cleavage to proliferative cell cycle – mammalian mid-blastula transition. At the embryonic level, we aim to understand how animal size is sensed and changes the temporal progression of development. Finally, we will investigate the role of embryo-uterus interactions in embryo morphogenesis and positioning within the uterus. The bottom-up engineering approaches will be complemented by top-down intravital microscopy to monitor embryogenesis in utero. Together, this project will bring mammalian developmental biology into a new stage.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences developmental biology
- natural sciences physical sciences optics microscopy
- medical and health sciences clinical medicine embryology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1011 JV AMSTERDAM
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.