CORDIS - EU research results
CORDIS

Digital Design strategies to certify and mAnufacture Robust cOmposite sTructures 

Objective

New certified designs for structures are critical for the new upcoming changes in conception of aircraft architectures. A variety of breakthrough designs and new strategies for a better use of material and integration of functions in aircrafts are required. They range from regional electrical mobility solutions to increased aspect ratio wings that will bring higher flexibility in structures. Digital conception and simulation need to play an ever-bigger role to reach a certified design that includes production scenarii before full manufacturing.
High-end simulation is a spearhead research activity present in many fundamental and applied research activities. The level of complexity of phenomena being solved through dedicated modeling techniques is constantly evolving and faces many challenges in validation and exploitation. For better use of these methods, the consortium will pursue the objective of scalability and representativity of results in the design process through appropriate Machine Learning surrogates, benefiting from High Performance Computing.
The DIDEAROT project aims at bringing a digital centrepiece approach that could integrate the move to more digital designs in the aircraft industry. It will cover the robust optimization of composite structures focused on digital predictions of two key aspects in its lifetime:
• Manufacturing: predicting distortions, stress build-up and assembly challenges for ever-more integrated industrial scale composite parts
• Dynamic loads and impact: predicting damage and effects from loads occurring at high speed or repeated loads over time that can lead to critical certification conditions.
While both aspects have been partially addressed by the research community, the challenge we tackle here is to integrate them together in the testing pyramid (up to an industrial scale) for certification of structures and increase the reliance on digital technologies (data or simulation driven) to ensure optimized design approaches.

Coordinator

CENTRE DE RECHERCHE EN AERONAUTIQUE ASBL - CENAERO
Net EU contribution
€ 713 750,00
Address
Batiment Eole, 1er étage - rue des Frères Wright 29
6041 Gosselies
Belgium

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Region
Région wallonne Prov. Hainaut Arr. Charleroi
Activity type
Research Organisations
Links
Total cost
€ 713 750,00

Participants (7)