Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Automated Maskless Laser Lithography Platform for First Time Right Mixed Scale Patterning

Project description

Lasers for more sustainable industrial manufacturing

Laser-based technologies that fabricate structures ranging in size from nanometres to millimetres have a variety of applications, including photonics, multifunctional surfaces and lab-on-a-chip. Laser lithography is used to produce these very fine structures, but its processes have several limitations. The EU-funded OPTIMAL project will combine for the first time various laser lithography technologies and quality monitoring systems into one platform to develop certain structures. It aims to speed up and improve the structuring procedure. This should boost the process efficiency and yield, thus minimising energy consumption, avoiding material waste, lowering costs and reducing lead-time in many applications.

Objective

Laser-based technologies for creating structures in the range from nanometer up to millimeter size find many applications such as free form optics, photonics, multifunctional surfaces, lab-on-chip, etc. with a global market volume of > 200 billion euros. The original structures know as masters are the first step in the making of tools for key-enabling technologies like injection molding or nanoimprinting. Some of the current limitations in the laser lithography processes are the limited depth of the structures, small area and low speed at process level, high-power consumption in the laser interference lithography, and multiple and expensive processes required for the development of hierarchical multifunctional structures at industrial level.
The OPTIMAL project will integrate for the first-time different laser lithography technologies, quality monitoring systems and processes in one platform for the development of structures with (i) high depth (150 micrometer), ii) dimensions in the range from 100 nm to sub-mm in XYZ, iii) 2D&3D shape on flat surface, (iv) combining parallel & serial patterning, (v) no need for external treatments on samples; vi) increased speed (1 cm2/min) and large area (up to 2000 cm2), vii) > 40% of reduction in the consumption of resources for the whole manufacturing process. The OPTIMAL project uses self-learning algorithms to optimize the virtual photomask as well as integrates methods for an inline control of the laser patterning.
By accelerating and upscaling the structuring process, the OPTIMAL project will increase the process efficiency and yield, which will reduce the energy consumption, avoid material waste, decrease costs, and lead time in many applications. The platform will potentiate the possibilities in the sustainable making of high quality, versatile, less costly masters for industrial manufacturing, as demonstrated in 4 use cases (optical lenses, multifunctional riblet structures, virtual reality lens, microfluidic chips).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-RIA - HORIZON Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-CL4-2021-TWIN-TRANSITION-01

See all projects funded under this call

Coordinator

JOANNEUM RESEARCH FORSCHUNGSGESELLSCHAFT MBH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 652 264,59
Address
LEONHARDSTRASSE 59
8010 GRAZ
Austria

See on map

Region
Südösterreich Steiermark Graz
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 652 264,59

Participants (8)

My booklet 0 0