Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

ANTIVIRAL, ANTIBACTERIAL & ANTIFUNGAL NANOCOATING PLATFORM

Project description

Nanomaterial-based coatings with antimicrobial properties

Coatings with anti-bacterial and anti-viral properties find applications on various solid surfaces, textiles and filters or masks. Improving the coatings' durability is the key objective of the EU-funded NANOBLOC project. Researchers will generate innovative coatings which combine nanoparticles and allow gradual release of ions to counteract pathogens. These coatings will be effective against a variety of pathogens including influenza virus and SARS-CoV-2, and will be able to withstand high temperatures used during sterilisation without compromising their properties. Importantly, they will be non-toxic to human health and the environment.

Objective

The NanoBloc consortium of 4 leading universities & institutes, and 5 companies (3 SMEs & 2 large enterprises) will develop & upscale (from TRL3 to TRL6) new all-European antimicrobial, antifungal & antiviral coatings made by industrially scalable, green technology suitable for application on a variety of substrates- porous filter materials (air filtration units, face masks), textiles (protective clothing, mattress covers, aprons, wallpaper), & on a variety of high-traffic solid surfaces (door knobs, handles, handrails, sanitaryware-taps, etc.).
A research line will focus on thin coatings- <200 nanometers- deposited by Physical Vapour Deposition, formed by a glass and/or ceramic matrix (e.g. silica) capable of incorporating silver or other metal nanoparticles, which can be applied on countless substrates. These coatings allow a gradual release of ions without dispersing the nanoparticles in the surrounding environment & have demonstrated their effectiveness toward proliferation of bacteria, fungi & viruses including respiratory syncytial virus, influenza virus A & with demonstrated virucidal effect towards SARS-CoV-2 on face masks. They can withstand temperatures up to 450 degrees celsius without altering their antimicrobial properties, thereby suited for thermal regeneration.
In addition, the project will build on previous work in obtaining coatings effective against a range of pathogens using technologies such as UV cured lacquers, sol-gel and electrophoretic deposition.
A key strength in our approach is in merging these research lines to obtain innovative products that will be brought to market by our industry participants.
New knowledge generated in the project on antiviral mechanisms & coating durability in operating conditions, will be used to select the most suitable technology for each application & to develop and up-scale effective & durable biocidal/virucidal coatings to relevant demonstrators with no toxic effects for health & environment.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-RIA - HORIZON Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-CL4-2021-RESILIENCE-01

See all projects funded under this call

Coordinator

POLITECNICO DI TORINO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 896 375,00
Address
CORSO DUCA DEGLI ABRUZZI 24
10129 Torino
Italy

See on map

Region
Nord-Ovest Piemonte Torino
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 896 375,00

Participants (9)

My booklet 0 0