Project description
AI for radiotherapy side effects prediction
Radiotherapy causes side effects in some patients. Cases of breast cancer can include breast atrophy, arm lymphedema and heart damage. Some factors that increase the risk are known. Existing approaches do not use all available complex imaging and genomics data. Artificial intelligence (AI) can contribute to predicting side effects. The EU-funded PRE-ACT project will use rich datasets from three patient cohorts to design and implement an AI tool to predict the risk of side effects, including arm lymphedema, in breast cancer patients and provide an easily understood explanation between the patient and physician for shared decision-making. The project will build AI predictive models to be incorporated into an existing commercial radiotherapy software platform.
Objective
Radiotherapy is a widely used cancer treatment, however some patients suffer side effects. In breast cancer, side effects can include breast atrophy, arm lymphedema, and heart damage. Some factors that increase risk for side effects are known, but current approaches do not use all available complex imaging and genomics data. The time is now ripe to leverage the huge potential of AI towards prediction of side effects. This project will use rich datasets from three patient cohorts to design and implement an AI tool that predicts the risk of side effects, including arm lymphedema in breast cancer patients and provides an easily understood explanation to support shared decision-making between the patient and physician.
The PRE-ACT consortium combines the expertise in computing (MDW, AUEB-RC), AI (HES-SO, CENTAI), radiation oncology (MAASTRO, UNICANCER), medical physics (THERA), genetics (ULEIC), psychology (CNR) and health economics (UM) that is necessary to tackle this problem.
The project will integrate data from the three cohorts and build AI predictive models with built-in explainability for each of the key side effects of breast cancer radiotherapy. These AI models will be incorporated into an existing commercial radiotherapy software platform to create a world-leading product. The extended platform will be validated in a clinical trial to support treatment decisions regarding the irradiation of lymph nodes. The trial will adopt an innovative design in which the patients and medical team in the test arm will receive the risk prediction, but those in the control arm will not. A communication package built with a co-design methodology will ensure that AI outcomes are tailored to stakeholders effectively. The trial will evaluate whether using the AI platform changed the arm lymphedema rate and impacted treatment decisions and quality-of-life. Generalizability of the AI models for other types of cancer will be sought through transfer learning techniques.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.1 - Health
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.1.5 - Tools, Technologies and Digital Solutions for Health and Care, including personalised medicine
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-HLTH-2021-DISEASE-04
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
112 57 ATHINA
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.