Project description
2D materials as a means to protect sensitive electronic devices from interference
As we welcome wireless technology into more areas of our life, engineers are seeking to find materials that can effectively prevent electronic devices from interfering with each other. Electromagnetic shielding typically uses metals such as copper to create a protective barrier around sensitive electronic systems and nullify radiation. However, many materials are prone to corrosion. Owing to their outstanding electrical, thermal and mechanical properties and versatile surface chemistry, 2D nanomaterials are great candidates for electromagnetic shielding applications. The EU-funded 2D-EMI project will investigate the economic and technical feasibility of using readily scalable additive manufacturing technologies for developing high-efficiency and customisable EMI shielding solutions based on 2D nanomaterials.
Objective
With the fast development of wireless communication, especially the new 5G technology, electromagnetic interference (EMI) shielding is becoming a challenge. High-performance EMI shielding materials are urgently needed in controlling electromagnetic radiation pollution that seriously affects the normal operation of sensitive electronic apparatus and systems. Metals are the most used shielding materials but suffer from easy corrosion, high density, and poor processibility. Despite the progress, most current research still concentrates on the solo enhancement of the EMI SE. To enable new EMI shielding applications for next-generation devices, multifunctionality and low reflection feature are also important for shielding material, which can significantly improve the application adaptability and reduce the secondary EMI pollution, respectively. Unfortunately, most of the present EMI shielding solutions cannot simultaneously integrate these characteristics. Therefore, pioneering alternative design and fabrication strategies for developing next-generation high-performance shielding materials beyond the usual protocols are urgently needed to meet the escalating demands of modern devices.
Furthermore, as a critical component in electronic devices and equipment, EMI shielding materials also meet great challenges from the miniaturization aspect. 2D nanomaterials are promising for EMI-shielding applications due to their outstanding electrical, thermal, and mechanical properties, versatile surface chemistry and their favourable capability to be assembled into macroscopic architectures or serve as conductive fillers for composite fabrication. The aim of this project is to determine the economic and technical feasibility of using readily scalable additive manufacturing technologies for the development of highly efficient and customizable EMI shielding solutions based on two-dimensional (2D) nanosheets for electronic applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks mobile network 5G
- engineering and technology nanotechnology nano-materials
- engineering and technology mechanical engineering manufacturing engineering additive manufacturing
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-POC1
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
D02 CX56 Dublin
Ireland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.