Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

GREEN ATMOSPHERIC PLASMA-GENERATED MONOATOMIC OXYGEN TECHNOLOGY FOR CONTACTLESS ATOMIC SCALE CLEANING OF WORKS OF ART/ MOXY

Project description

Novel oxygen-based method for cultural heritage conservation

Tangible cultural heritage assets constitute an invaluable and irreplaceable resource of humanity, which are increasingly threatened by contaminants from pollution, vandalism and fire. Available cleaning methods require mechanical action and solvents which can be detrimental to art materials and harmful to health and the environment. Cleaning with extremely short-lived oxygen atoms - atomic oxygen could provide a breakthrough solution. Experts from plasma physics, heritage science, and conservation from 10 European research organizations, museums, and SMEs, have joined forces in a new MOXY project, coordinated by Ghent University, which aims to develop an unprecedented green cleaning technology to remove contaminants in a non-contact manner, without health or environmental concerns.

Objective

Climate crisis and unsustainable development increasingly threaten Europes tangible cultural heritage (CH), yet environmentally hazardous chemicals persist in CH conservation practice. The Sustainable Development Goals of the EUs Green Deal vision call for change in CH conservation, but cannot be implemented without effective and affordable green alternatives. Soiling and deposition of carbon-based contaminants (CBC) such as fine particulate pollution, smoke and vandalism all increasingly present formidable challenges to conservators, and are an emerging threat to CH because of the inherent vulnerability of CH surfaces created with unconventional materials and studio practices. Existing CH cleaning methods require toxic solvents, physical contact and water, which can damage many sensitive CH materials, and conservators, equipped with only conventional means, now encounter fragile and untreatable CH where soiling cannot be removed at all. MOXY aims to redefine the paradigm in cleaning methodology towards an eco-conscious approach by creating a transformative green, non-contact technology based on atomic oxygen (AO) to selectively remove CBCs from surfaces that are otherwise untreatable. AO cleaning methodology is a selective, non-mechanical and liquid-free cleaning action, without health or environmental risks, residues or waste. By leveraging a sophisticated yet simple technology, MOXY will enable practitioners to achieve unprecedented results that are green, safer and more effective. To achieve its goals, MOXY will bring together expertise from plasma physics, conservation science, sustainability science, and conservators to conduct a novel investigation of the physical and chemical aspects of AO generation and flux to develop a proof-of-concept AO system, test the viability of AO technology for diverse CH materials, and roadmap AO innovation, to propel AO technology to the bench practice in CH conservation and beyond, with its full potential yet to be realized.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-RIA - HORIZON Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-CL2-2021-HERITAGE-01

See all projects funded under this call

Coordinator

UNIVERSITEIT GENT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 099 875,00
Address
SINT PIETERSNIEUWSTRAAT 25
9000 GENT
Belgium

See on map

Region
Vlaams Gewest Prov. Oost-Vlaanderen Arr. Gent
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 099 875,00

Participants (9)

My booklet 0 0