European Commission logo
English English
CORDIS - EU research results
CORDIS

Exchange of Light alkenes and Alkyl halides from Arctic Tundra Ecosystem

Project description

Mapping the sources of volatile organic compounds in the Arctic

Our atmosphere is constantly influenced by volatile organic compounds (VOCs). Emitted by biological organisms and various anthropogenic activities, these gases can lead to ozone creation or depletion. But in the Arctic, the driver of the emission and absorption of many common VOCs is still unknown. The EU-funded ELATE project seeks to shed light on these sources and sinks and use modelling to quantify how increased atmospheric CO2 and biological factors impact them. Understanding the changes in common VOCs, like light alkenes, could help researchers better interpret their impact on the climate and raise public awareness of EU’s climate neutrality goals.

Objective

Volatile Organic Compounds (VOCs) play a critical role in the physical and chemical properties of the atmosphere and regulating Earth’s climate. Among them, light alkenes and alkyl halides (e.g. CH3X) are also critically important for tropospheric ozone formation and stratospheric ozone depletion, respectively. However, global budgets of light alkenes and CH3X are not in balance because many sources/sinks have not been quantified realistically due to paucity of measurements; especially, fluxes in Arctic ecosystems have not yet been well established. Furthermore, drivers of the fluxes and their response to the fast climate change are yet to be unraveled.

This proposed project aims to fill in the gaps of the state-of-the-art by (1) determining the sources/sinks of these VOCs in an Arctic tundra ecosystem; (2) quantifying how Arctic warming and increased atmospheric CO2 may impact the VOCs fluxes in the Arctic tundra ecosystems; (3) constructing the relationships between the VOC fluxes and environmental and biological factors to determine the drivers of variability and synchronicity of fluxes; and (4) constructing flux algorithms to be incorporated into the MEGAN model to enhance scientific understanding of VOC biogeochemistry and related environmental implications.

The project takes an interdisciplinary approach involving atmospheric biogeochemistry, environmental chemistry, Arctic ecology and ecosystem modeling, which combines my research skills and expertise of the host. The expected high-quality publications, training and interdisciplinary collaborations will be valuable assets to support my career development. The effective dissemination of the research outputs will increase the public’s consciousness on earth system as a whole and the action of climate change mitigation, and will bring important social benefits by promoting the public’s agreements on EU’s goal of climate-neutral by 2050 and the implementation of European Green Deal.

Funding Scheme

MSCA-PF - MSCA-PF

Coordinator

KOBENHAVNS UNIVERSITET
Net EU contribution
€ 230 774,40
Address
NORREGADE 10
1165 Kobenhavn
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data

Partners (1)