Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS

Mediterranean Coral Performance under Warming and Iron enrichment conditions

Project description

Can corals adapt to climate change?

As climate change warms waters, will Mediterranean corals be able to adapt? They may have an advantage in that their habitats have naturally high fluctuations of temperature and salinity, as well as ample iron from land run-off. The EU-funded MedCorP project will seek to find out, using a novel combination of high-resolution microsensing technologies, bioimaging, and nanoscale spectrometry to explore the metabolism of Mediterranean corals at the microscale level. Researchers will measure their metabolic responses during elevated temperature and iron availability and quantify the role of inorganic iron in coral cellular metabolism. They will also develop a new coral health index for coral metabolic performance.

Objective

Mediterranean corals live in habitats with naturally high fluctuations of temperature and salinity, which could enable their survival under future extreme climatic scenarios. The nutritional status of corals is linked to the uptake of several micronutrients, which support cellular metabolism and growth. Among these, iron is a fundamental micronutrient for respiratory and photosynthetic processes. Although the iron concentration in seawater can be extremely low, Mediterranean coastal waters are subject to large quantities of nutrients, including iron, via runoff discharge from land. Most corals require a certain amount of iron to support their metabolic processes, but the assimilation rate, critical thresholds, and the allocation of iron in different spatial compartments of corals remain to be studied. This project aims to describe the effects of elevated temperature and iron enrichment on the microenvironment and ecophysiology of corals from the Mediterranean Sea through a novel combination of high-resolution microsensing technologies, bioimaging, and nanoscale spectrometry to explore coral metabolism at the microscale level. By measuring their metabolic responses during elevated temperature and iron availability, I will quantify the role of inorganic iron for coral cellular metabolism, develop a new coral health index for coral metabolic performance, and share this knowledge openly to target specific actions for stakeholders (e.g. government departments, environmental agencies, scientists). With this valuable fellowship, I aim to expand my scientific experience to assess coral health comprehensively at the microscale, which I strongly believe will be a novel way to observe and predict changes in the natural environment. The outcome will serve as a new tool to precisely understand the extent of environmental changes, in particular, the effects of ocean warming and iron concentration, predicting the consequences on the Mediterranean Sea in the short and long term.

Funding Scheme

MSCA-PF - MSCA-PF

Coordinator

KOBENHAVNS UNIVERSITET
Net EU contribution
€ 214 934,40
Address
NORREGADE 10
1165 Kobenhavn
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data

Partners (2)