Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS

Behavioral state-dependent effects of electrical stimulation on neuronal activity

Project description

Delineating the impact of brain electrical stimulation

Brain function depends on neuronal activity which is mediated via electrical impulses. As such, brain stimulation has been used to treat mood disorders and stress. Nonetheless, the design of stimulation protocols necessitates a better understanding of the impact of electrical stimulation and the effect it has on other interacting brain regions. Funded by the Marie Skłodowska-Curie Actions (MSCA) programme, the ELECTRONEUROSTIM project aims to investigate how electrical stimulation affects the activity of neuronal populations in vivo. Researchers will employ animal models to associate neuronal activity and behaviour during electrical stimulation. The generated insight will serve as the stepping stone for the design of electrical stimulation protocols.

Objective

Techniques to deliver electricity to the human brain have been applied in an attempt to restore brain functions or modify behavior. Yet, many fundamental questions remain. First, it is unclear how to design stimulation protocols that lead to reliable stimulation outcomes. Second, it is challenging to define a stimulation protocol that could modify behavior without a clear understanding of the dynamic interplay between brain regions during complex behaviors. Finally, one of the goals of stimulation is to induce effects that outlast the stimulation period but whether and how lasting effects are induced is still unclear. As a first step to tackle some of these issues, the proposed project aims at understanding how electrical stimulation affects the activity of neuronal population in-vivo and whether behavioral states modulate such effects. Here I plan to use mice to bridge neuronal and behavioral levels combining highly controlled behavioral paradigms with recordings of neuronal activity at high spatial resolution during electrical stimulation applied using cutting-edge technologies. I will also implement computational models to understand the mechanisms of action of electricity on neuronal activity and to guide further experiments. Insights from this work will shed light on the realm of possible effects of electrical stimulation, and on how brain activity could be shaped to achieve specific behavioral outcomes. Ultimately, this knowledge may lead to the rational design of stimulation protocols that could be applied in humans, ideally non-invasively, to restore brain functions.

Coordinator

UNIVERSITE D'AIX MARSEILLE
Net EU contribution
€ 211 754,88
Address
BOULEVARD CHARLES LIVON 58 LE PHARO
13284 Marseille
France

See on map

Region
Provence-Alpes-Côte d’Azur Provence-Alpes-Côte d’Azur Bouches-du-Rhône
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data

Partners (1)