Description du projet
Modélisation complète des implants en alliage de titane produits par fabrication additive
Le titane et ses alliages sont largement utilisés pour les implants osseux en raison de leur rapport résistance-poids élevé et de leur biocompatibilité. La personnalisation de ces implants pour les patients pourrait améliorer radicalement leurs performances. Les méthodes traditionnelles de post-traitement peuvent modifier efficacement la structure et les propriétés des alliages métalliques. Leur combinaison avec la fabrication additive permettrait d’obtenir des implants personnalisés de haute performance et de réduire le besoin de reprise chirurgicale. Fort du soutien du programme Actions Marie Skłodowska-Curie, le projet M3TiAM élaborera des outils informatiques robustes capables de prévoir l’effet des traitements post-traitement sur la microstructure et les propriétés mécaniques des structures d’échafaudage issues de la fabrication additive destinés à la conception rationnelle de nouveaux implants en titane.
Objectif
Patient-customized bone replacement implants with (micro)structural and mechanical properties tuned by design would constitute a major advance in the biomedical field. Classical metallurgical post-processing (e.g. annealing or hot-isostatic-pressing) offer an efficient way to modify metallic alloys microstructure and resulting properties. Hence, the combination of titanium alloys, scaffold structures, and additive manufacturing open promising avenues to produce custom implants that mimic natural bones and thus reduce the need for revision surgery. Moreover, modelling tools across scales are mature enough to simulate microstructural evolution and its effect on material properties, which could accelerate the design of high-quality, high-fidelity, affordable implants. The aim of M3TiAM project is to develop robust computational tools to predict the effect of post-processing treatments on microstructure and mechanical properties of additively manufactured scaffolds structures, in order to guide the design of novel Ti-based implants. To do so, multidisciplinary and multiscale theories will be combined into i) a process-sensitive structural module using phase-field modelling to predict phase evolution of biocompatible Ti alloys and ii) a structure-scaffold geometry-sensitive mechanical performance module using crystal-plasticity (microscale) and finite element (macroscale) models to predict the mechanical behaviour of bulk material and scaffold structures. The resulting computational framework will guide the design and optimisation of novel metallic implants, from the level of their microstructure to that of entire scaffold-based implants. The expected impact include: new insight into process-microstructure-properties in metallic alloys, new multi-scale and multi-physics coupling and upscaling strategies, accelerated adoption and deployment of additive manufacturing of scaffold implants for personalized medicine.
Champ scientifique
- natural scienceschemical sciencesinorganic chemistrytransition metals
- medical and health scienceshealth sciencespersonalized medicine
- natural sciencescomputer and information sciencescomputational sciencemultiphysics
- engineering and technologymechanical engineeringmanufacturing engineeringadditive manufacturing
- medical and health sciencesmedical biotechnologyimplants
Mots‑clés
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Régime de financement
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinateur
28906 Getafe
Espagne