Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The ultrastable state of metallic glasses and its role in the structural pathway of ageing

Project description

Extraordinary properties of ultrastable metallic glasses under study

According to recent studies, excess enthalpy levels in some materials are deemed to originate from fast relaxation contributions that are locally embedded in an otherwise stable structure. Such features strongly link to recently reported novel states of structurally heterogeneous glasses. The EU-funded PathAge project will test whether these novel states relate to ultrastable metallic glasses. The latter exhibit remarkable thermodynamic and kinetic stability over conventional metallic glasses.

Objective

What are the structural characteristics of ultrastable metallic glasses?

The recently discovered ultrastable state of metallic glasses (MGs) exhibits a variety of thermodynamic stability levels in combination with an enhanced kinetic stability. As a hypothesis, observed levels of excess enthalpy originate from faster relaxation contributions that are locally embedded in an otherwise stable structure. Such features remind strongly of novel MG-states of structurally heterogeneous glasses that were recently reported by experiments on conventional MGs and molecular dynamics simulations.
The aim of the PathAge project is to test the hypothesis in terms of the ultrastable MGs relation to these novel structural states. This builds on quantifying the evolution of the ultrastable state in response to thermal stimulus by tracing the structural transformation towards the supercooled liquid or eventual crystallization. Three possible mechanistic routes will be considered: First, a front-initiated process as observed for ultrastable molecular glasses. Second, a homogeneous structural evolution triggered by fast relaxation contributions. Third, a transformation involving an underlying phase transition of a heterogeneous glass state.
In order to distinguish between the proposed transformation scenarios, the following novel experimental approaches will be used in addition to traditional methods: The so-called single-parameter-ageing formalism known from the field of molecular glasses, which will allow for predicting and testing the homogeneous ageing scenario. Surface sensitive methods that probe nanoscale heterogeneities revealing the formation of structurally heterogeneous glassy states. Spatially resolved electron diffraction combined with atomistic simulations to identify preferred local structural motifs.

In concert, these approaches will significantly enhance the understanding of the unique ultrastable MG-state, thereby unlocking potential for novel applications of MGs.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2021-PF-01

See all projects funded under this call

Coordinator

BUNDESANSTALT FUER MATERIALFORSCHUNG UND -PRUEFUNG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 189 687,36
Address
Unter den Eichen 87
12205 Berlin
Germany

See on map

Region
Berlin Berlin Berlin
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0