Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Machine Learning for Structural Health Monitoring of Cultural Heritage

Descripción del proyecto

Ordenadores y drones para preservar sitios históricos

El aprendizaje automático, la visión artificial y otras tecnologías digitales pueden ayudar a vigilar y preservar los sitios del Patrimonio de la Humanidad. Esto es muy importante en el caso de Europa, que cuenta con unos cuatrocientos sitios de la Unesco, desde la Acrópolis de Atenas hasta la ciudad histórica de Verona en Italia. En el proyecto MLCULT, financiado por las Acciones Marie Skłodowska-Curie, se desarrollarán técnicas para diagnosticar daños en edificios del patrimonio cultural. Se diseñará un modelo entrenado a partir de la base de datos de edificios del patrimonio cultural dañados por terremotos. El equipo del proyecto identificará y cuantificará varias tipologías de indicadores de daños debido a la intemperie, la entrada de humedad, el crecimiento de algas y la eflorescencia. Además, demostrará un prototipo de sistema de inspección que utiliza detección de daños en tiempo real basada en drones, específicamente para daños en edificios. Todo ello puede ayudar a identificar anomalías estructurales que necesitan una reparación urgente.

Objetivo

Europe is home to about 400 UNESCO world heritage sites and has a growing tourism industry employing many people directly and indirectly. Hence, it is of concern to ensure the cultural heritage (CH) buildings are inspected properly and correct damage diagnosis is performed. Incorrect damage diagnosis will lead to loss of cultural value and may lead to the closing of the monument, thus affecting society in general and the livelihood of people associated with it. The proposed MLCULT project is motivated by the need to perform damage diagnosis of CH using image-based machine learning (ML) techniques, thus helping to preserve them. The popularity of ML approaches and deep learning algorithms has increased considerably over the last two decades. Computer-vision-based damage detection employing convolutional neural networks will be integrated with laser scan data, nondestructive testing, and other condition assessment data to provide a better estimate of existing areas of damage. The model will be trained from the database of earthquake-damaged CH collected by the host institutions UMinho and Polimi. Several typologies of damage indicators will be identified and quantified, due to weathering, moisture ingress, algae growth, and efflorescence. The project will be supervised by Prof. Loureno at the University of Minho, Portugal, who is an international expert on CH, and Prof. Luigi Barazzetti at Politecnico di Milano, Italy whose has expertise in computer-vision, drone and image-based damage detection. Finally, a prototype inspection system (first of its kind in CH field) using drones-based real-time damage detection will be demonstrated, specifically for CH damage pathologies. The proposed method can help in identifying structural anomalies in CH that must be urgently repaired and thus can be used in high-quality civil infrastructure monitoring systems. This method would also enable fast screening of CH buildings after a disaster such as an earthquake.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) HORIZON-MSCA-2021-PF-01

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

UNIVERSIDADE DO MINHO
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 172 618,56
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Socios (1)

Mi folleto 0 0