Project description
Studying chromosomal inversion to learn more about ecological adaptation
Despite the great progress in evolutionary biology research, the inversion polymorphisms related to local adaptation remain an unexplored field. Using the Atlantic herring (Clupea harengus) as a case study, the EU-funded INVERT2ADAPT project will investigate the mechanisms behind the local adaptation based on chromosomal inversions. To achieve this, INVERT2ADAPT will use a series of diverse tools such as comparative genomics, phylogenomics, population genomics, gene expression and functional genomics. The project aspires to contribute to better understand the interactions between genotype, phenotype and environment and the role of the structural variation in the adaptation in natural populations.
Objective
Large chromosomal inversions have been increasingly linked to local adaptation in natural populations. Despite their importance, there is current debate about what evolutionary forces maintain inversion polymorphisms in natural populations, particularly regarding the interplay between balancing and divergent selection. Furthermore, limitations of sequencing technologies often result in poor characterization of inversion breakpoints obscuring our understanding of their functional impact. INVERT2ADAPT will focus on Atlantic herring (Clupea harengus) as a model system to study the contribution of chromosomal inversions to local adaptation using multiple genomics tools. First, I will characterize the chromosomal inversions and date their origin relatively to the evolutionary history of Atlantic herring using comparative genomics and phylogenomics. Second, I will study the selection regimes that maintain the inversions across a gradient of sea water temperate using population genomics. Lastly, I will pinpoint the genes and regulatory elements within the inversions that are involved in adaptation to sea water temperature using gene expression and functional genomics. The project will allow to better understand how Atlantic herring is able to survive across a wide range of sea water temperature in the Atlantic Ocean. A clear establishment of the link between linking genotype, phenotype and environment is important to understand how Atlantic herring might adapt to changes in sea water temperature induced by global warming. INVERT2ADAPT will also contribute to a better understanding of how structural variation, including large chromosomal inversions, contribute to adaptation in natural populations. The project will be implemented in Uppsala University under the supervision of Professor Leif Andersson.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
751 05 Uppsala
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.