Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS

Textile-based Metamaterials for Broadband Noise Absorption in Low-frequency Range

Project description

Textiles for noise control in cities

Cities are loud. Noise is one of the biggest pollutants in modern cities. Chronic exposure to urban noise is one of the biggest health risks in city life. While fibreglass and other acoustic absorbers are widely used, they are too expensive and impractical for low-frequency noise that is common as background noise in urban environments. This includes the noise from traffic and high-voltage power poles. The Marie Skłodowska-Curie Actions project TextMetamater will develop a new class of metamaterials composed of textile fabrics, which can form different resonant elements (e.g. cavity structure, gradient index structure and membrane structure) employing textile technologies and manifold assemblies. This is a new possibility to solve the noise problem and increase quality of life in urban environments.

Objective

Owing to rapid urbanization, millions of people are suffering noise, especially the noise in a low-frequency regime (<500 Hz). Conventional acoustic absorbers (e.g. glass fiber and polyester fiber) have been applied to control the noise by absorbing incident acoustic energy. While the sound absorption in the low-frequency regime using such absorbers is impractical because their dimensions are usually comparable to the large wavelengths of low-frequency sound waves. In recent years, acoustic metamaterials have exhibited excellent low-frequency sound absorption performance. However, these metamaterials usually produce only one narrowband absorption peak. Furthermore, the practical application of most of the acoustic metamaterials is hindered due to the high-cost manufacturing techniques (i.e. 3D printing) and low production efficiency. This project proposes a new classification of metamaterials which is composed of textiles. The textile manufacturing techniques are highly efficient. Textile fabrics can form different resonant elements (e.g. cavity structure, gradient index structure and membrane structure) employing textile technologies and manifold assemblies. Moreover, the different textile resonant elements can combine together to fabricate integrated broadband low-frequency sound absorbers. The knowledge and technologies from acoustic and textile disciplines will be integrated to achieve the aim. One of the most important aims of this project is to develop the metamaterials made by textiles to overcome the shortcomings of currently known metamaterials. This project provides a new possibility to solve the noise problem to increase life quality of the public. Another essential objective is to acquire new knowledge and skills from the host to improve the career competencies and professional experience of the applicant. This objective and sharing the skills with the host will be fulfilled through two-way transfer approaches (e.g. training, presentations, etc.).

Coordinator

TECHNISCHE UNIVERSITAET MUENCHEN
Net EU contribution
€ 189 687,36
Address
Arcisstrasse 21
80333 Muenchen
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data