Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Robust and data-Efficient Learning for Industrial Control

Project description

A holistic approach to delivering energy

Our life depends on heat, power and gas networks. The greening of these networks is crucial to Europe’s energy and resource efficiency targets. In this context, the EU-funded RELIC project will explore a holistic approach to how resources and energy are delivered to the industry via distribution networks. It will explore how incorporating data-driven learning in the design of control algorithms leads to improved environmental performance. Currently, timescales ranging from milliseconds to ensure the safe operation of pumps or generators to days or months make operation complicated. There is uncertainty in terms of the operating conditions and incomplete information. The project will develop new operating strategies for distribution networks.

Objective

"Increasing energy and resource efficiency in industrial systems is key to decrease harmful emissions by 90% by 2050. Reaching the environmental targets requires a holistic approach to how resources and energy are delivered to the industry by means of distribution networks, such as heat networks, electricity networks, or gas transport networks. I will devise new control strategies that ensure robust operation of distribution networks while ensuring safety and satisfaction of environmental objectives.

The environmental performance of the whole system hinges on the performance of distribution networks. Optimal control of such networks is complex due to timescales, from milliseconds to ensure safe operation of pumps or generators, to days or months to include environmental goals, spatial complexity, uncertainty related to varying operating conditions, incomplete information available, and limited computational power. Existing control frameworks are usually application specific and have limited use in large-scale systems. In the project, I will advance theory in data analytics and optimisation, and build on my industrial experience to develop operating strategies for distribution networks that will enable safe implementation and reaching the environmental targets.

There is a potential in integrating machine learning in control design to overcome the complexity while satisfying safety constraints, as shown in robotics and automotive industry. However, IPCC indicated that ""The key challenge for making an assessment of the industry sector is the diversity in practices, which results in uncertainty, lack of comparability, incompleteness, and quality of data available in the public domain on process and technology specific energy use and costs"". The research question I will address in this project is if and how incorporating data-driven learning in design of control algorithms leads to improved environmental performance and safe operation of large-scale industrial networks."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2021-PF-01

See all projects funded under this call

Coordinator

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 210 911,04
Address
HOGSKOLERINGEN 1
7491 TRONDHEIM
Norway

See on map

Region
Norge Trøndelag Trøndelag
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0