Project description
Towards a better model of vision
Drawing on expectations and context to make sense of the patterns of light entering the eyes is fundamental to our visual experience. Yet vision is usually modelled as a feedforward hierarchy. The EU-funded FFvsFB-UHF-fMRI project aims to create a better model by resolving the roles and mechanisms of feedforward and feedback processing. Using ultra-high field functional magnetic resonance imaging to monitor the distinct cortical layers receiving feedforward or feedback input, researchers will investigate how the processing streams interact in humans. They will use population receptive field mapping to characterise layer-specific receptive fields in visual crowding and Mooney image disambiguation – psychophysical paradigms in which spatial context and prior object knowledge determine perception. The goal is to understand how higher-level cortical areas shape low-level visual processing.
Objective
Visual perception has long been cast as an inference process, in which feedforward sensory signals are integrated with expectation-related feedback. For every feedforward sensory pathway, there is a reciprocal feedback projection, yet standard models continue to represent vision as a feedforward hierarchical network. Such models fail, however, when confronted with cases in which global spatial context, expectations, or other higher-order cognitive functions affect local processing. The characterization of the distinct roles and mechanisms of feedforward and feedback processing is thus crucial for better models of vision. Based on the theory of predictive coding, a proposed implementation of visual inference, we propose the receptive field (RF) as the mechanism by which feedforward and feedback processes interact. We present three projects that harness recent advances in neuroimaging techniques, allowing in vivo imaging of recurrent processing in humans. Ultra-high field (UHF) functional magnetic resonance imaging (fMRI) enables a hitherto impossible investigation of layer-specific cortical processing, with different cortical layers receiving input from either feedforward or feedback channels. We will leverage the sub-millimeter spatial resolution of UHF fMRI, together with population receptive field (pRF) mapping, to target feedforward and feedback RF properties in two behavioral paradigms - visual crowding and Mooney image disambiguation. Crowding is dependent on global spatial context, recruiting recurrent processing between early and mid-level visual areas, whereas the prior object knowledge manipulation involved in Mooney image disambiguation targets early to high visual areas. The investigation of the contextual modulation of layer-specific pRF properties will help elucidate the mechanisms by which higher cortical areas affect early sensory processing - a long-standing question in neuroscience, whose resolution is essential to the progress of vision research.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
- natural sciences biological sciences neurobiology cognitive neuroscience
- natural sciences computer and information sciences artificial intelligence computer vision
- engineering and technology medical engineering diagnostic imaging magnetic resonance imaging
- natural sciences biological sciences neurobiology computational neuroscience
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
14195 BERLIN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.