Project description
6G systems integrating localisation, sensing and communications
A 6G system will use various computing, communication and sensing technologies to offer different novel smart applications. There are several key enabling technologies poised to drive the development of 6G. These include large antennas emitting in the millimetre-wave and terahertz parts of the electromagnetic spectrum, reconfigurable intelligent surfaces that will reshape and control the electromagnetic response of the environment and machine learning to tackle big problems in wireless communication systems. In the envisioned 6G systems, localisation, sensing and communication must all coexist, sharing the same time, frequency and spatial resources. Funded by the Marie Skłodowska-Curie Actions programme, the 6G-ISLAC project plans to realise such integrated sensing, localisation and communication systems for 6G.
Objective
In parallel to the evolution of 5G communication systems, 6G concepts are being developed in the academic community. In 6G, several key technical enablers are envisioned: i) mmWave and THz frequencies electromagnetic with extremely large bandwidths, and extremely large antenna arrays; ii) reconfigurable intelligent surfaces that control the propagation environment; and iii) machine learning to solve problems for which mathematical models are not sufficient. As location-aware communication (i.e. to optimize network efficiency and communication capacity by exploiting location, map, and trajectory information) is already a part of 5G, we expect that the 6G key enablers will also lead to high-accuracy sensing and localization and, in turn, improve communication quality. The goal of this project is to develop integrated sensing, localization, and communication systems for 6G, and the project comprises the following 3 work packages (WPs). In WP1, joint parameter estimation methods for the 6G channel are studied, and low-complexity methods will be developed based on the inherent high resolution of the 6G channel. By exploiting the estimated channel parameters of 6G signals, novel methods for estimating user state as well as sensing the time-varying propagation environment will be developed in WP2. We will design methods to use sensing and localization information from WP2 for initial beam search, beamspace processing, beam alignment, and power allocation in WP3. In doing so, we address several of the fundamental challenges in 6G communications and high-accuracy sensing and localization.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks mobile network 5G
- natural sciences computer and information sciences artificial intelligence machine learning
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 Goteborg
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.