Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Full-field experimental and numerical investigation of novel fire resistant fibre reinforced concrete for tunnel lining

Objective

The problem of tunnel fires is one of the most complex areas of fire research. Under fire, concrete linings spall resulting in the collapse of the tunnel structure causing a significant scourge in the economy, society and the environment. In summary, the design of tunnel concrete linings is based on thermal calculations, which ignore spalling. Based on such calculations new types of more durable, strong and hence denser concrete have been introduced on the market recently that are much more probable to spall due to their lower permeability. To increase the permeability of the concrete and ultimately its fire resistance, it is commonly suggested to add polypropylene fibres. However, these tend to decrease the strength of the concrete and potentially its durability. In FiRe2C I propose a new type of Fire Resistant, Fibre Reinforced Concrete to improve on the tunnel lining's performance and ultimately the post-fire structural stability of the tunnel. To enhance our understanding of the performance of the Concrete on a multi-scale level, I will employ a holistic approach between state-of-the-art numerical (Discrete Element Method) and full-field experimental methods (advanced material and fire testing & x-ray computed tomography), pushing the existing boundaries of our scientific knowledge. Specifically, I will study experimentally the effect of size, distribution and orientation of the fibres on the strength and fire-resistance of concrete linings, by employing full-field imaging techniques pre- and post-fire, which has not been done before. And finally, I will create a novel DEM model to predict the thermo-mechanical response of fibre-reinforced concrete, utilising for the first time quantitative 3D experimental measurements at different length-scales to validate accurately the material response.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2021-PF-01

See all projects funded under this call

Coordinator

ETHNICON METSOVION POLYTECHNION
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 169 326,72
Address
HEROON POLYTECHNIOU 9 ZOGRAPHOU CAMPUS
157 72 ATHINA
Greece

See on map

Region
Αττική Aττική Κεντρικός Τομέας Αθηνών
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0