Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Trust-ML: An Optimization-based Platform for Building Trust in Machine Learning Models used for Power Systems

CORDIS proporciona enlaces a los documentos públicos y las publicaciones de los proyectos de los programas marco HORIZONTE.

Los enlaces a los documentos y las publicaciones de los proyectos del Séptimo Programa Marco, así como los enlaces a algunos tipos de resultados específicos, como conjuntos de datos y «software», se obtienen dinámicamente de OpenAIRE .

Resultado final

Data Management Plan (se abrirá en una nueva ventana)

The Data Management Plan describes the data management life cycle for all data sets that will be collected, processed or generated by the action. It is a document describing what data will be collected, processed or generated and following what methodology and standards, whether and how this data will be shared and/or made open, and how it will be curated and preserved.

Communication, Dissemination & Outreach Plan (se abrirá en una nueva ventana)

The plan describes the planned measures to maximize the impact of the project, including the dissemination and exploitation measures that are planned, and the target group(s) addressed. Regarding communication measures and public engagement strategy, the aim is to inform and reach out to society and show the activities performed, and the use and the benefits the project will have for citizens.

Publicaciones

GPU-Accelerated Verification of Machine Learning Models for Power Systems (se abrirá en una nueva ventana)

Autores: Chevalier, Samuel and Murzakhanov, Ilgiz and Chatzivasileiadis, Spyros
Publicado en: Proceedings of the 57th Hawaii International Conference on System Sciences, 2023
Editor: Proceedings of the 57th Hawaii International Conference on System Sciences
DOI: 10.48550/arXiv.2306.10617

Scalable Bilevel Optimization for Generating Maximally Representative OPF Datasets (se abrirá en una nueva ventana)

Autores: Nadal, Ignasi Ventura; Chevalier, Samuel
Publicado en: ISGT Europe, 2023
Editor: ISGT Europe
DOI: 10.48550/arxiv.2304.10912

11th Bulk Power Systems Dynamics and Control Symposium (se abrirá en una nueva ventana)

Autores: Jochen Stiasny, Samuel Chevalier, Rahul Nellikkath, Brynjar Sævarsson, Spyros Chatzivasileiadis
Publicado en: 11th Bulk Power Systems Dynamics and Control Symposium, 2022
Editor: 11th Bulk Power Systems Dynamics and Control Symposium
DOI: 10.48550/arXiv.2203.07505

Emission-Aware Optimization of Gas Networks: Input-Convex Neural Network Approach (se abrirá en una nueva ventana)

Autores: Dvorkin, Vladimir; Chevalier, Samuel; Chatzivasileiadis, Spyros
Publicado en: Conference on Decision and Control, 2022
Editor: Conference on Decision and Control
DOI: 10.48550/arxiv.2209.08645

Optimization-Based Exploration of the Feasible Power Flow Space for Rapid Data Collection (se abrirá en una nueva ventana)

Autores: Nadal, Ignasi Ventura; Chevalier, Samuel
Publicado en: Smart Grid Comm, 2022
Editor: Smart Grid Comm
DOI: 10.48550/arxiv.2206.12214

Towards Optimal Kron-based Reduction Of Networks (Opti-KRON) for the Electric Power Grid (se abrirá en una nueva ventana)

Autores: Samuel Chevalier and Mads R. Almassalkhi
Publicado en: Conference on Decision and Control, 2022
Editor: Conference on Decision and Control
DOI: 10.48550/arXiv.2204.05554

A Parallelized, Adam-Based Solver for Reserve and Security Constrained AC Unit Commitment (se abrirá en una nueva ventana)

Autores: Chevalier, Samuel
Publicado en: EPSR, 2024, ISSN 1873-2046
Editor: EPSR
DOI: 10.48550/arxiv.2310.06650

IEEE Transactions on Industry Applications (se abrirá en una nueva ventana)

Autores: Samuel Chevalier and Spyros Chatzivasileiadis
Publicado en: IEEE Industry Applications Society (Under Review), 2024, ISSN 0093-9994
Editor: Institute of Electrical and Electronics Engineers
DOI: 10.48550/arXiv.2211.07125

Interpretable Machine Learning for Power Systems: Establishing Confidence in SHapley Additive exPlanations (se abrirá en una nueva ventana)

Autores: Hamilton, Robert I.; Stiasny, Jochen; Ahmad, Tabia; Chevalier, Samuel; Nellikkath, Rahul; Murzakhanov, Ilgiz; Chatzivasileiadis, Spyros; Papadopoulos, Panagiotis N.
Publicado en: ICLR 2024, 2024
Editor: ICLR 2024
DOI: 10.48550/arxiv.2209.05793

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles

Mi folleto 0 0