Project description
Testing collective behaviour of active agents using light
Active matter encompasses systems whose fundamental constituents dissipate energy to exert forces on each other. From molecular motors to bacterial colonies, schools of fish and human crowds, active agents are found at all scales in nature. Such systems are intrinsically out of thermal equilibrium. Internally excited agents more closely represent active matter compared to those excited by external forces, but there is still no way to test their response to external stimuli. Funded by the Marie Skłodowska-Curie Actions programme, the PhotoActive project aims to design macroscopic self-propelled agents that are internally excited but are driven by an external stimulus. The idea is to develop and implement Hexbug-like particles whose source of energy comes from a photovoltaic cell.
Objective
In the last years, there has been an outstanding growing interest in active matter. In these complex systems, a number of interacting agents consume and convert energy into mechanical motion, representing nice examples of out-of-equilibrium behavior. Such systems are important because they can be found in nature ranging from the microscopic to the macroscopic scale, e.g. molecular motors, cells, bird flocks, or human crowds. Interestingly, and despite the obvious differences among the agents that compose these systems, common behavioral patterns have been identified such as collective motion, anomalous diffusion, segregation, or clogging in the flow through constrictions. Aiming for a better understanding of these complex active systems a reductionist strategy is necessary, and this is why the study of active granular matter (very simple self-propelled agents that interact uniquely by contacts) is widely acknowledged.
Within active grains, we can distinguish between internally excited ones (such as Hexbugs) or externally forced ones. Certainly, the former have the advantage to closely resemble real active matter but, to date, also have the drawback of not allowing testing their response to external stimulus. My proposal, PhotoActive, aims to fill this gap by designing novel macroscopic self-propelled agents that are internally excited but can be driven by an external stimulus as it occurs with all natural systems. The idea is to develop and implement Hexbug-like particles whose source of energy comes from a photovoltaic cell. The great advantage of these novel agents concerns the versatility that provides using a fully controllable illumination panel with which we can impose spatial intensity gradients or temporally evolving patterns. In this way, and applying an interdisciplinary approach involving experiments, numerical modeling, and simulations, we ambition boosting the existing understanding of active matter systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
31080 PAMPLONA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.