Objective
It has long been suggested that the laws of thermodynamics may specify thresholds for the origin of life, in terms of minimal free energy fluxes needed to perform basic life-like functions such as self-maintenance and self-replication. Such thresholds have yet to be derived, however, in large part because conventional thermodynamics is restricted to systems that are in equilibrium, macroscopic in scale, and that do not exchange information with their environments. On the other hand, protobiological systems (minimal systems that lay at the beginning of life) were likely far-from-equilibrium, nanoscale, and exchanged information (e.g. via simple mechanisms of adaptive response such as chemotaxis).
Recent times, however, have witnessed a revolution in nonequilibrium thermodynamics, which has produced far-reaching results concerning systems that are far-from-equilibrium, nanoscale, and may exchange information. These results are currently finding various applications in the study of biophysics of modern organisms. While the tools of nonequilibrium thermodynamics are well-suited for analyzing protobiological systems, they have yet to be applied in origin of life research. Instead, most existing models of protobiological systems are highly abstracted and ignore underlying thermodynamics. In addition, existing research in the field has paid very little attention to the role of information exchanges in early life.
This project will address these gaps, by using techniques from modern nonequilibrium thermodynamics to study the origin of life. Specifically, it will investigate thermodynamic tradeoffs involved in three essential protobiological functions (self-maintenance, self-replication, and Darwinian evolution), including in systems that exchange information with their environment. This project will shed light on fundamental thermodynamic thresholds, which will have important implications for our theoretical understanding of the origin of life.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences thermodynamics
- social sciences political sciences political transitions revolutions
- social sciences law
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08002 Barcelona
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.