European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Atomic-layer additive manufacturing for solar cells

Description du projet

Fabrication additive d’une résolution atomique destinée aux cellules solaires

La fabrication additive à couche atomique (ALAM pour «atomic-layer additive manufacturing») deviendra réalité. Le projet ALAMS, financé par l’UE, a pour ambition de prototyper des cellules solaires dans de grands réseaux de microdispositifs. Le concept d’ALAM combine les principes de la fabrication additive (impression 3D) avec la résolution atomique obtenue grâce à la technique de revêtement mince du dépôt par couche atomique (ALD). Le prototype s’articule autour d’une tête d’impression qui délivre les précurseurs d’ALD à la phase gazeuse à proximité de la surface du substrat, et qui intègre un élément microfluidique offrant une résolution latérale de l’ordre du micromètre. Le projet appliquera le concept ALAM à cette étude de cas spécifique; ce concept ne se limite toutefois pas au photovoltaïque, il permettrait aussi d’améliorer la fabrication additive et les systèmes microélectromécaniques.

Objectif

"The ALAMS project will provide the first application of ""atomic-layer additive manufacturing"" (ALAM), namely for the prototyping of solar cells in large arrays of microdevices. The ALAM concept combines the principles of additive manufacturing (3D printing) with the atomic resolution achieved by the thin coating technique atomic layer deposition (ALD). In ALD, atomic-level control is achieved by judiciously designing the surface reaction chemistry of molecular precursors at near-room temperature for it to become self-limiting. This renders experimental use of ALD very robust to a wide range of parameter variations, since the film growth occurs in a cyclic, layer-by-layer mode. This advantage will be exploited towards 3D printing, an area of application that ALD has never been used for until we built the first ALAM prototype in November
2019. This prototype centers around a printhead that delivers the ALD precursors to the gas phase in the vicinity of the substrate surface, with a microfluidic element delivering a lateral resolution on the order of micrometers. The motion of the printhead with respect to the substrate allows the user to ‘print’ lines and structures of arbitrarily chosen geometries, whereby each pass over a given point of the substrate adds to it exactly the amount of material corresponding to one ALD monolayer, that is, a thickness typically on the order of an atom, or 0.1 nanometer (depending on the exact ALD reaction used). After developing the ALD chemistry needed for ALAM of the materials required to generate photovoltaic stacks, the ALAMS PoC project will apply it to a case study, namely the rapid prototyping of solar cell microdevices in large arrays. The ALAM concept, however, is valid beyond the confines of photovoltaic research. Its commercial potential stems from its position at the convergence of two highly modern, fast-growing markets, namely, additive manufacturing ('3D printing') and microelectromechanical systems (MEMS)."

Mots‑clés

Institution d’accueil

FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG
Contribution nette de l'UE
€ 150 000,00
Adresse
SCHLOSSPLATZ 4
91054 Erlangen
Allemagne

Voir sur la carte

Région
Bayern Mittelfranken Erlangen, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
Aucune donnée

Bénéficiaires (1)