Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Directed Orchestration of Microfluidic Environments for guided Self-organisation

Project description

A novel microfluidic system for research on congenital disorders

Despite progress in understanding the pregnancy and birth process, there is still a lot to be explored regarding congenital anomalies, the structural or functional disorders that occur during foetal development. The EU-funded DOMES project aims to identify the environmental factors that contribute to the manifestation of these disorders. More specifically, the project will focus on developing an innovative microfluidic 3D cell culture platform for the study of the factors that impact tissue and organogenesis and their pathogenic mechanisms. The focus will be given to the effect of drugs and endocrine disruptors on the collecting duct system and their impact on congenital diseases of the kidney.

Objective

In Europe, 263 per 10,000 pregnancies are diagnosed with a fetal congenital anomaly. Congenital anomalies, also referred to as birth defects, are defined as structural or functional disorders that occur during fetal development and are inherited, and/or caused by environmental factors. Unfortunately, the link between environmental factors, such as drugs, toxins or other chemicals, and the manifestation of these multifactorial disorders is poorly understood. To identify environmental factors affecting tissue and organogenesis and study their pathogenic mechanisms, new 3D in vitro models with reliable and highly reproducible architecture are urgently needed. None of the current cell culture systems available can provide the controlled environment needed to sufficiently guide the self-organization process of stem cell-based 3D in vitro models. Our new microfluidic platform, DOMES, is the first of its kind, combining precise control over morphogenetic processes with standardized and user-friendly handling. In this project, we will exemplarily focus on congenital diseases of the kidney, in particular the collecting duct system. We will analyse on-chip the impact of specific environmental compounds, such as drugs and endocrine disruptors, on the branching morphogenesis of the collecting duct.
DOMES is a product family of microfluidic 3D cell culture chips which will allow the control and study not only of kidney organoids, but of other 3D cell models including lung, neural, gut organoids and embryoid bodies. This is the first instance of a cell culture platform allowing direct orchestration of the microfluidic environment for guiding self-organisation, symmetry breaking and organogenesis, and represents a paradigm shift in researchers ability to study development of organs and their congenital anomalies in vitro.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-POC1

See all projects funded under this call

Host institution

UNIVERSITEIT MAASTRICHT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
MINDERBROEDERSBERG 4
6200 MD Maastricht
Netherlands

See on map

Region
Zuid-Nederland Limburg (NL) Zuid-Limburg
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0