Project description
Technology for methane abatement in agriculture
The EU’s 10 million farms contribute 10 % of total greenhouse gas emissions in the EU. Methane makes up nearly half (43 %) of emissions from the sector. However, there are no technical solutions for methane abatement. Since agriculture is the largest source of methane emissions, scientists are searching for efficient and cost-affordable solutions to reduce emissions. For instance, methane is emitted by cow belching and manure decomposition. The EU-funded CANMILK project will use non-thermal plasma technology to develop simple-to-use, low maintenance technology for methane abatement. The project will deliver simple and efficient equipment for dairy and meat cattle barns, and useful insight into the socio-economic and environmental feasibility of plasma-based methane abatement.
Objective
The challenge of agricultural GHG emissions is that they are highly diluted and originate from more than 10 million European farms. Thus, local emissions are small but the combined contribution on European level is ca. 10% of total GHG emissions. A significant portion of these is methane (ca 43 %), and most of that is produced by enteric fermentation, i.e. by belching cattle. Viable technical solutions do not exist for methane abatement, and new developments are urgently needed to meet the targets set by Methane Strategy, Farm to Fork Strategy and Fit for 55 legislation package for agricultural carbon neutrality in 2035. They must have high potential for commercialization, be efficient in methane abatement and costs must be affordable for the farmers.
CANMILK will develop technology that is simple to use and has low maintenance, with overall cost below 80 €/t CO2-eq. A non-thermal plasma, or cold plasma, is today in everyday use e.g. in fluorescent lamps and ozone generators. CANMILK project will utilize this technology in a novel and innovative way in the fight against methane.
The work is focused on the methane activation by plasma derived oxygen or hydrogen species enabling methane decomposition with the help of catalysts at mild conditions. As a result we expect to get 1) a simple and efficient equipment for methane abatement in dairy and meat cattle barns, 2) a good view of the socio-economic and environmental feasibility of plasma-based methane abatement and 3) increased public, scientific and industrial awareness of feasible solutions available for GHG abatement in agriculture.
Our estimate for the efficiency of the CANMILK technology is 90% methane conversion, which in case of maximum utilization in barns would lead to total GHG abatement of ca. 140 Mt CO2-eq/a in Europe. This would have significant positive impacts to farmers, rural communities, consumers and industry in the transition of the European economy towards more carbon neutral, sustainable future.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- agricultural sciences animal and dairy science dairy
- agricultural sciences agriculture, forestry, and fisheries agriculture
- natural sciences chemical sciences catalysis
- agricultural sciences animal and dairy science domestic animals animal husbandry
- engineering and technology industrial biotechnology bioprocessing technologies fermentation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.5.1 - Climate Science and Solutions
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL5-2021-D2-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.