Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Foundations of quantum computational advantage

Project description

New techniques underlying the design of efficient quantum algorithms

The success of quantum computing critically depends on advances at the most fundamental level. Efficient quantum algorithms can have a significant impact on important, broad-reaching problems, solving mathematical problems faster than their classical counterparts. While several powerful quantum algorithms are known, the basic techniques they employ are few. The EU-funded FoQaCiA project aims to extend the theoretical basis for the design of quantum algorithms. To this end, researchers will study four areas of quantum phenomenology: quantum contextuality, non-classicality and quantum advantage; the complexity of classical simulations of quantum computations; arithmetic of quantum circuits; and efficiency of fault-tolerant quantum computation.

Objective

In FoQaCiA, we will expand the theoretical basis for the design of quantum algorithms. Our view is that the future success of quantum computing critically depends on advances at the most fundamental level, and that large-scale investments in quantum implementations will only pay off if they can draw on additional foundational insights and ideas. While several powerful quantum algorithms are known, the basic techniques they employ are few and far between. Largely, it still remains to be discovered how to systematically harness the quantum for computation.

We study four areas of quantum phenomenology: (i) Quantum contextuality, non-classicality, and quantum advantage, (ii) Complexity of classical simulation of quantum computation, (iii) Arithmetic of quantum circuits, and (iv) Efficiency of fault-tolerant quantum computation.

These fields are chosen for two reasons. First, their progress is of great importance for the physical realisation and the broad applicability of quantum computation. Regarding (i), one of the simplest proofs of quantum contextuality, Mermin’s star, has recently been employed to prove (Bravyi, Gosset, König) that bounded-depth quantum circuits are more powerful than their classical analogues. We seek to expand this result beyond bounded depth. In (ii), we study the quantum speedup by shaving off the redundant part – the efficiently classically simulable. In (iii), we aim to provide more efficient techniques for gate and circuit synthesis, utilising the number-theoretic underpinnings of the problem. Regarding (iv), given the celebrated threshold theorem, and the fact that the error threshold is now known to be within reach of experiment, we will tackle the remaining challenge of reducing the cost of fault tolerance.

The second reason for selecting the above work areas is to mine them for foundational quantum mechanical structures and find related quantum algorithmic uses.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-RIA - HORIZON Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-CL4-2021-DIGITAL-EMERGING-01

See all projects funded under this call

Coordinator

INTERNATIONAL IBERIAN NANOTECHNOLOGY LABORATORY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 341 117,50
Address
AVENIDA MESTRE JOSE VEIGA
4715-330 Braga
Portugal

See on map

Region
Continente Norte Cávado
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 341 117,50

Participants (5)

Partners (6)

My booklet 0 0