Project description
Using full spectrum solar for green hydrogen
Utilising solar power to split water is a clean way to make hydrogen, but efficiency is low due to limited light harvesting and the slow water oxidation half reaction. The EU-funded GH2 project will solve this by designing a system to use the full solar spectrum instead of just UV and visible light, as well as employing biomass derivative oxidation. Researchers will also improve efficiency by combining UV-visible photocatalysis and infrared-driven thermal catalysis, as well as using a flow double tube reactor. The target is to produce a hydrogen yield of 60 %, as well as other high-value chemicals. It will also ensure the EU is a leading producer of green hydrogen.
Objective
Water splitting for H2 production driven by solar energy is quite attractive while the current efficiency is very moderate due to both the extremely sluggish water oxidation half reaction and limited light harvesting (mostly UV-visible light). In addition, the separation of one product H2 from the other O2 during water splitting is very costly.
The project is designed to address these challenges by i) utilizing the full solar spectrum (300-2500nm) instead of UV-visible light (300-700nm), ii) coupling water splitting with biomass-derivative oxidation to avoid water oxidation, iii) well combining solid Z-scheme UV-visible photocatalysis and Infrared-driven thermal catalysis, and iv) using a flow double tube reactor other than batch reactors, thus targeting to produce green H2 from both water and biomass with a high quantum yield of 60% . Furthermore the project will co-produce high-value chemicals with a high selectivity of >90%. In addition, the integration of low-cost and efficient catalysts with novel flow reactors will assure a continuous and efficient production of H2 and high-value chemicals. The entire process does not use fossil fuels nor produce CO2, thus a zero carbon-emission technology. Finally the system can be readily scaled up by numbering up the reactor modules. All these are built upon a multidisciplinary and international consortium with the global experts in photocatalysis, thermal catalysis, reactor engineering, product separation, simulation and social science. Therefore the scientific and technical challenges, as well as the environmental, societal and economic impacts will be fully addressed in the project. The proposed technology will typically benefit the EU economy by an innovative green H2 production process from water and biomass, heavily contributing to a low carbon society. In addition, the international team including members from Asia will facilitate the technology exploitation out of the EU, to further benefit the EU economy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences catalysis photocatalysis
- natural sciences chemical sciences electrochemistry electrolysis
- engineering and technology environmental engineering energy and fuels
- agricultural sciences agricultural biotechnology biomass
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.3.1 - The European Innovation Council (EIC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-EIC - HORIZON EIC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EIC-2021-PATHFINDERCHALLENGES-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08225 Terrassa
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.